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1 | Recent Advances in Mathematics 

PREFACE 

Our book is titled Recent Advances in Mathematics. The book 

primarily discusses the new methodologies, including statistical 

analysis, theoretical analysis, modified method analysis, and 

comparisons between the new and traditional methodologies. Each 

chapter has certain techniques for summing up the issues that clarify 

the ideas. Each topic is presented with care and it is hoped that the book 

will satisfy the needs of scholars from various professional fields. For 

their particular interests, the research in this field is therefore very 

significant and helpful. I'd like to thank the authors for their invaluable 

works and also the publishing house for their cooperation. 

Assist. Prof. Esen HANAÇ 

DURUK 
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CHAPTER 1 

A STUDY ON THE NUMBER   AND RANDOMNESS 

   Assoc. Prof. Levent ÖZBEK
1

DOI: https://dx.doi.org/10.5281/zenodo.10436043 

1 Ankara Üniversitesi, Fen Fakültesi, İstatistik Bölümü, Ankara, Türkiye. 

ozbek@science.ankara.edu.tr, ORCID ID: 0000-0003-1018-3114 
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INTRODUCTION 

The number  is one of the most elegant flowers in the mathematical 

garden. It has been a flower that mathematicians and other scientists have 

smelled with curiosity and interest for hundreds of years since Archimedes 

(Öztürk & Özbek, 2015). This number has many features: It is a transcendent 

number, that is, it is a number that cannot be the root of a polynomial whose 

coefficients are integers. The proof of this was made by Ferdinand von 

Lindemann in 1882. His proof was based on two centuries of important 

mathematical contributions. The 01 ie  equation, which we encounter in 

the mathematics literature and whose aesthetic properties are often mentioned 

by mathematicians, is quite interesting in that it contains 0,1,,, veie   

numbers, which are the most important constant numbers of mathematics. 

Although many different methods are used to calculate , today convergent 

infinite series, multiplications and sequential recurrence relations are used 

(Borwein, 2000).  

For thousands of years, people have been trying to calculate more 

decimal places of , and it is a matter of curiosity how these decimal places 

are distributed. Where does this interest in   come from? What other 

properties of  are ready to be discovered other than those known so far? The 

most elegant flower of the mathematical garden stands there and perhaps 

waits like a lover ready to offer its infinite features. In almost all mathematics 

books, especially those written for people who are interested in mathematics, 

the properties of  are mentioned. It's really interesting to see how  is used 

differently in geometry, probability, differential and integral calculations 

(Özbek, 2018).  

Why would anyone want to calculate the value of  to billions of 

digits, as is done today with supercomputers? What is the source of this 

interest in the decimal places of ? This is used to measure the capabilities of 

supercomputers' hardware and software. Computational methods can lead to 

new ideas and concepts. Doesn't  have any order or pattern? Does it contain 

an endless variety of patterns? Are some numbers in  more common? Aren't 

these numbers randomly distributed? Perhaps the interest and admiration that 

mathematicians have felt for  throughout the centuries can be compared to 

the strong desires and emotions that drive mountain climbers to climb higher 

and higher. 










 









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In fact, the answers to all these questions have not been given clearly 

yet. A new research article about  is published every day. As long as human 

curiosity and passion continues, the desire to find a new aesthetic direction in 

 seems to continue forever. This study deals with the decimal digits of  

within the framework of the concept of random sequence, and aims to discuss 

the suitability of these decimal digits for the definition of random sequence. 

Also given are examples of how to simulate using these decimal places. 

1. RANDOMNESS, MODELLING AND SIMULATION 

 Various experiments are carried out to test the validity of the models, 

but in some cases it can be quite difficult and expensive to conduct 

experiments. In such cases, simulation processes are performed, which means 

experimenting on the model. Simulation is a word that means imitation. 

Nowadays it is used as a buzzword. The two most powerful tools of the 

human mind in modeling are mathematics and statistics. Statistics comes to 

the fore especially in modeling phenomena involving randomness. In this 

case, the question of what "randomness" is is important. The "randomness" 

debate will not be entered here. "Ragelessness" is one of the main topics 

discussed in the fields of science, philosophy and art. The articles in the 

bibliography can be used to obtain detailed information about this concept. 

Random numbers are used in the simulation phase in many applied 

science fields such as Econometrics, Numerical Analysis, Cryptography, 

Computer Programming, Experimental Physics, Statistics, etc. Simulation; It 

is the experimentation of random events, systems and processes on a model in 

a computer environment (Morgan, 1992). In recent years, simulation is one of 

the leading methods used especially in the field of education. Random 

numbers are the basis of the simulation. It is desired that the simulation 

process should be able to imitate the event in the real world well; if the 

imitation cannot be done well, the experiment will not be able to represent the 

event in the real world well. For these reasons, the concept of random 

sequence is of great importance in terms of application. Various functions of 

random variables with uniform distribution in the cccc range are used to 

obtain observations from statistical distributions. If random numbers cannot 

be generated from a uniform distribution in the ccc range, naturally it will not 

be possible to generate numbers from other distributions. For this purpose, 

various generators (functional relationships) are used and generators that 

provide various statistical properties are used as random number generators. 

These numbers are known as "pseudo-random numbers" because they are 



 
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generated according to certain mathematical rules. Many methods are used to 

generate these numbers in the computer environment. The most important of 

these methods are linear conjugate generators (Deak, 1990). 

These, 

x(k+1)=a*x(k)+c (mod m) 

It is in the form. Numbers are produced sequentially by determining the 

starting value of x(0), the numbers a, c and m. The important thing here is that 

the numbers do not repeat each other and can be produced as many times as 

desired. These produced numbers are also required to meet some statistical 

properties. Numbers generated in this way are called “pseudo-random” 

numbers. In the computer, we see the initial value of x(0) as a random number 

because we do not know the numbers a, c, m and they pass some tests. True 

random numbers are generated as a result of experiments involving 

randomness or by electronic means. For convenience, these pseudo-random 

numbers are used in the computer. Generating these random numbers is a 

separate field of expertise. 

2. CALCULATION OF   USING RANDOM NUMBERS 

  can also be calculated using random numbers. Let's consider the 

square of -1 x 1 and -1 y 1 in the (x,y) coordinate system and call this 

region S. Let's consider the unit circle in this coordinate system again. 

Let's call the region formed by the unit circle A. Let's shoot random 

arrows into this square. The arrows fall inside the unit circle only 

when x^2+y^2 1 equality is achieved. Since the area of the square is 4 

and the area of the circle is , the probability of a randomly thrown 

arrow falling inside the unit circle is found as 

P(A)=Area(A)/Area(S)= /4. We can calculate the P(A) value by 

shooting arrows or using random numbers. Arrows are often thrown 

into this square and those that fall into the circle are counted. If this is 

called the number of successes, the ratio of the total number of 

successes to the number of attempts gives us an idea about this 

probability. If the total number of successes is m and the number of 

attempts is n, =4*m/n is found from the equation m/n= /4. Since 

the number of trials is certain, just finding the number m will do the 

trick. From these results, the  value can be approximately 







 





Recent Advances in Mathematics| 8 

 

calculated. In the Fig. 1 arrows falling inside the square are shown in 

green, and those falling inside the circle are shown in pink. 

   

 

Figure 1:  Calculation of  number 

3. BUFFON'S NEEDLE PROBLEM 

Buffon's Needle Problem; (The naturalist Louis Leclers – Count of 

Buffon, 1777) is particularly interesting in that  emerges as a result of the 

solution of a geometric probability problem (Blatner, 2003). This experiment 

can easily be done by anyone and an estimate for  can be obtained. A plane 

is separated by parallel lines spaced d units apart. A needle of length l is 

dropped randomly onto this striped surface. If the needle lands on a line, it is 

considered a good shot. The probability of a good shot is 2l/d . When d=1, 

the probability will be 2/ . If the experiment is done n times and the number 

of successes is m,      = m/2n. It is possible to find pages on the Internet that 

simulate this experiment (See Fig. 2). 











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Figure 2: Buffon's Needle Problem; 

4. WHAT IS RANDOMNESS? 

Theoretical Physicist R. Pagels "What is randomness?" While trying to 

answer the question, he touched upon the importance of distinguishing 

between mathematical and physical randomness problems. “A mathematical 

problem is a logical problem that defines what an arbitrary sequence of 

numbers or functions means. The physical randomness problem is to 

determine whether real physical events meet the mathematical criteria for 

randomness. Until we have a mathematical definition of randomness, we 

cannot determine whether a sequence of natural events is truly random. “Once 

we have such a definition, we then have the additional empirical problem of 

determining whether actual events correspond to such a definition.” (Pagels, 

1992; Özbek, 2016) 

Let's consider the coin toss experiment and give the value 0 to heads 

and 1 to heads. Although the probability of occurrence of the sequences 

0000000000, 1111111111, 0101010101, 0010100110 are theoretically equal, 

it is clear that the others, except the fourth sequence, are not random. In the 

experiment of drawing 10 balls on a return basis from a jar containing balls 

numbered 0 to 9, respectively; Although the probability of occurrence of the 

sequences 0123456789 and 0082167489 are theoretically equal, randomness 

in the first sequence is still suspected. 
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The definition of a random sequence for arrays whose elements consist 

of digits of a certain number system is given as follows: When the elements in 

the array are considered as consecutive k-numbers, if the distribution of these 

k-numbers in the k-dimensional unit cube is uniform, this sequence is called 

k-uniform. For example, for k=1, a regular sequence of numbers based on b 

means that the relative frequency of each digit in the sequence converges to 

1/b. If a sequence itself and all its subsequences are k-uniform for every k, 

this sequence is called a random sequence. 1,0,1,0,1,0,1,0,1,0 sequence 1-

smooth, 0,0,0,0,0,0,0,0,0,0 1-not smooth, 1, The sequence 0,1,0,0,1,1,1,0,1 is 

1-regular, 2-regular. The fact that the sequence consisting of numbers on the 

basis of k = 1, b = 10 is 1-order means that the relative frequency of each digit 

in the sequence converges to 1/10. When it comes to arrays with a finite 

number of elements in the simulation, how will randomness be ensured for 

such finite element arrays? Since the series has finite elements, k-smoothness 

cannot be mentioned at all for large k's (Deak, 1990). 

5. STATISTICAL PROPERTIES OF THE DIGITS OF  

Studies to date on the decimal digits of    have shown that these 

numbers pass all statistical (random) tests (Dodge, 1996; Jaditz, 2000; 

Lange, 1999; Osler, 1999; Ganz, 2014; Bailey, & Borwein, 2012; 

Ganz, 2017; Bailey, & Borwein, 2017). It should also be noted that a 

new statistical test may be developed and these numbers may fail this 

test. Although it seems that there is no order in these decimal places 

(which has not been found to date), researchers continue their studies 

under the assumption that there may be an order. Many methods have 

been developed and are still being developed to calculate the digits of 

. I wonder if there are some statistical features in these steps? We will 

try to observe these without going into too much statistical information. 

Let's say that the digits of the number  are in a file (the number of 

digits we will use is 33,554,400, the programs,  calculator and other 

documents related to this study can be found at leventmodelleme.com.) 

I wonder how many of the numbers 0,1,2,…,9 are there. If they are 

uniformly distributed, they will be found in approximately the same 

proportions. That is, there will need to be approximately 3,355,440 of 

each of the numbers 0,1,2,…,9. How many of these numbers there are 

can be calculated with a short computer program. We can plot the 










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results and see them visually. Accordingly, the number of digits is 

found as 3355085 3355565 3356623 3355072 3357257 3356378 

3353816 3354630 3354113 3355861 and Fig. 3.  

 

 

Figure 3: Number of ones 

A graph in the form of 1 is obtained. As can be seen from the result, 

the numbers of the digits 0,1,2,…9 are very close to each other. If these 

numbers were distributed evenly with a probability of 1/10, 3,355,440 of each 

would be expected. With these expected values, the Chi-square value can be 

calculated in Statistics using the observed (counted) values (this is called a 

goodness-of-fit test of a distribution). When this is calculated, the hypothesis 

that the observed values are a uniform distribution taking the values 

0,1,2,3,4,5,6,7,8,9 with a probability of 1/10 is accepted. 

If the numbers in the file are considered side by side, how many of the 

numbers 00, 01,02,…,99 are there? If a simple computer program is written 

for this and the results are plotted, a graph in the form of Fig.4 is obtained. 

When the numbers are considered side by side, there are a total of 33554400/2 

= 16,777,200 binaries. We expect there to be 16,777,200/100 = 167,772 

numbers 00, 01,…,99. As seen in the figure, the number of pairs is around 

167,772. The reason for our expectation here is that the distribution of the 

numbers 00,01,…99 is a uniform distribution with a probability of 1/100. 
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Similarly, the Chi-square hypothesis test was performed and it was seen that 

these had a uniform distribution. 

Similarly, while the total number of triplets is 11,184,800 and the 

expected value for each triplet is 11,184, the number of quadruplets is 

8,388,600 and the expected value is 838. Hypothesis testing was conducted 

for these and it was found that they had a uniform distribution. Thus, 1-2-3-4 

uniformity was achieved (see Fig. 4-5). We may wonder whether a larger 

number of evennesses, for example, 100, 1000, can be achieved statistically. 

For this, the 33,554,400 digits we have will not be enough; billions to trillions 

of digits will need to be calculated. Calculating this many digits requires 

computer hardware and software along with more mathematics. 

 

Figure 4: Number of groups of two 
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Figure 5: Number of triples 

 

Figure 6: Number of quadruplets 

Calculating these steps requires both mathematical knowledge and 

good algorithm design, and these algorithms are sometimes used to test the 

speeds of newly developed computers. Billions of digits of are recorded on 

CDs and in some cases are used as natural random numbers in simulation 

studies. So far these digits have passed all statistical tests of randomness. 
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6. SIMULATION STUDY USING DIGITS OF  

Now let's do a simulation study using the digits of . It can be 

accomplished as described below without using computer random number 

generators. Let there be 1000 grasshoppers at a certain starting point and each 

of them moves 1 unit length in the north-south-east-west directions with equal 

probability. Let the next grasshopper choose one of these directions and 

move. Let 1000 of them continue this random movement with equal 

probability from where they are after moving 1 unit. How can observations be 

made from this random movement regarding the direction selection of 

grasshoppers through simulation? We know that the digits of  pass 2 

regularity tests. Then, using these steps, a rule can be made for this direction 

selection. North directions can be selected for 00,01,…,24, south for 

25,26,…,49, east for 50,51,…,74, and west for 75,76,…,99. When the 

grasshoppers jump accordingly and mark the places they go, a beautiful image 

like the one below emerges. This can be done with a small computer program 

and can be seen as an animation. If they did not move with equal probability, 

the digits of  would not be usable. As a result, if grasshoppers are placed in 

the middle of a field and move randomly with equal probability, they will 

consume the entire crop of the field after a certain period of time. 

Figure 7: The figure resulting from the simulation 








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Different ideas can be developed and different research can be 

conducted to see different results like this. Pictures of the digits of the number 

 can be drawn and music can be made. 

14159265358979323846264338327950288419716939937510582097

4944592307816406286208998628 

Let's take the steps again. One step after 1, 1 is encountered, let's call 

this success. It can be seen as the number of shots made by a basketball player 

with a probability of success of 1/10 until he achieves the first success. What 

will be the average of the shots this basketball player makes until he achieves 

his first success? For example, after this success, he will shoot the basket 

again after 33 shots, and from now on he will shoot 18 times. It is possible to 

expand this idea. It is very difficult to count them by eye; by making a simple 

small computer program, the distribution of the number of shots made until 

the first success can be revealed. Similar step counts can be made for other 

digits 0,2,…,9. By using the steps of the number you can obtain from the 

documents, you can discover various features and create beautiful smiles on 

your face. This will be an image of dealing with numbers reflected not only in 

your brain but also in your body. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


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Appendix: Digits of  

3.1415926535897932384626433832795028841971693993751058209749445

92307816406286208998628034825342117067982148086513282306647093

84460955058223172535940812848111745028410270193852110555964462

29489549303819644288109756659334461284756482337867831652712019

09145648566923460348610454326648213393607260249141273724587006

60631558817488152092096282925409171536436789259036001133053054

88204665213841469519415116094330572703657595919530921861173819

32611793105118548074462379962749567351885752724891227938183011

94912983367336244065664308602139494639522473719070217986094370

27705392171762931767523846748184676694051320005681271452635608

27785771342757789609173637178721468440901224953430146549585371

05079227968925892354201995611212902196086403441815981362977477

13099605187072113499999983729780499510597317328160963185950244

59455346908302642522308253344685035261931188171010003137838752

88658753320838142061717766914730359825349042875546873115956286

38823537875937519577818577805321712268066130019278766111959092

16420198938095257201065485814159265358979323846264338327950288

41971693993751058209749445923078164062862089986280348253421170

67982148086513282306647093844609550582231725359408128481117450

28410270193852110555964462294895493038196442881097566593344612

84756482337867831652712019091456485669234603486104543266482133

93607260249141273724587006606315588174881520920962829254091715

36436789259036001133053054882046652138414695194151160943305727

03657595919530921861173819326117931051185480744623799627495673

51885752724891227938183011949129833673362440656643086021394946

39522473719070217986094370277053921717629317675238467481846766

94051320005681271452635608277857713427577896091736371787214684

40901224953430146549585371050792279689258923542019956112129021

96086403441815981362977477130996051870721134999999837297804995

10597317328160963185950244594553469083026425223082533446850352

61931188171010003137838752886587533208381420617177669147303598

25349042875546873115956286388235378759375195778185778053217122

68066130019278766111959092164201989380952572010654858632788659

36153381827968230301952035301852968995773622599413891249721775

28347913151557485724245415069595082953311686172785588907509838

17546374649393192550604009277016711390098488240128583616035637

07660104710181942955596198946767837449448255379774726847104047

53464620804668425906949129331367702898915210475216205696602405

80381501935112533824300355876402474964732639141992726042699227

96782354781636009341721641219924586315030286182974555706749838

50549458858692699569092721079750930295532116534498720275596023


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64806654991198818347977535663698074265425278625518184175746728

90977772793800081647060016145249192173217214772350141441973568

54816136115735255213347574184946843852332390739414333454776241

68625189835694855620992192221842725502542568876717904946016534

66804988627232791786085784383827967976681454100953883786360950

68006422512520511739298489608 
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INTRODUCTION 

Today's real-world problems have stimulated many researchers to 

generalize and improve the traditional calculus. Although a generalisation of 

the ordinary calculus in the sense of fractional calculus is based on Leibniz’s 

curiosity(Leibniz, 1962) in 1695, its improvements result from word's 

necessary needs. Nowadays, fractional calculus is employed in various fields 

such as diffusion, mathematical physics, signal processing, tomography, 

mechanism, (Coimbra, 2003; Diethelm & Diethelm, 2010; Heymans & 

Podlubny, 2006; Kilbas et al., 2006; Obembe et al., 2017; Sweilam & Al-

Mekhlafi, 2016; Tarasov, 2019) due to expressing the present issues more 

appropriate according to the ordinary calculus. 

A fractional delay differential equation (Mahmudov & Aydin, 2021; 

Mahmudov, 2019, 2022; Li & Wang, 2018; You et al.; 2020) is a differential 

equation consisting of the derivatives of fractional-orders which depend both 

on the present state variables and on the past state variables. So this 

constitutes a prerequisite part of social and scientific subjects such as spreads 

of information or energy and transport in isolated systems. As a special case, a 

differential equation of integer or fractional orders including the derivatives of 

integer or fractional orders of the state variables with retardation is known as 

the neutral fractional(ordinary) differential equations(Pospısil, 2017; Pospisil 

& Skripkova 2015; You et al., 2021; Zhang et al., 2013) which can be 

employed from modelling spread of epidemic, population growth to 

modelling the movements of (radiation) electrons.  On looking at the 

literature, we have observed that many researchers in the studies(Huseynov & 

Mahmudov, 2022; Pospısil, 2017; Pospisil & Skripkova 2015; You et al., 

2021; Zhang et al., 2013)  that have considered the neutral 

fractional(ordinary) differential equations in terms of distinct aspects such as 

controllability, etc. 

The notion of controllability that Kalman firstly put forward at the 

beginning of 1960s is among the main concepts in contemporary control 

theory. Even though there exist many distinct definitions about controllability 

depending on the sorts of control system in the literature, there is no uniform 

and connected approaches about controllability for nonlinear dynamical 

control systems due to the lack of general techniques for settling out nonlinear 

differential equations just as in the situation of linear dynamical systems. 

Fixed point approach is apparently the strongest technique to acquire the 

controllability outcomes for nonlinear dynamical control systems(Aydin & 
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Mahmudov, 2022).  In (You, 2020),  Zhongli et al. show the controllability of 

a generalized form of  delayed equations of a fractional order with coefficient 

matrices which do not have to be either zero or permutable investigated by 

Mahmudov in (Mahmudov, 2019). Pospisil (Pospisil, 2017) examines the  

controllability of the following neutral equations 

𝜌′(𝜍) − 𝐻𝜌′(𝜍 − 𝜏) = 𝐴𝜌(𝜍 − 𝜏) + 𝑔(𝜍),   𝜍 > 0,  𝜏 > 0,
(1) 

  𝜌(𝜍) = 𝜓(𝜍) ,  - 𝜏 ≤ 𝜍 ≤ 0, 

Pospisil (Pospisil, 2017) achieves to define each control function of 

system (1) by means of the shifted Legendre functions and provided  the same  

Kalman type condition for the controllability  of  the just-given equations (1). 

Researchers in the study (You et al., 2021) prove the controllability for the 

following equations (2) with permutable matrices via the fixed point theorem 

of the Krasnoselskii 

𝜌′(𝜍) − 𝐻𝜌′(𝜍 − 𝜏) = 𝑍𝜌(𝜍) + 𝐴𝜌(𝜍 − 𝜏) + 𝑔(𝜍),   𝜍 > 0, 𝜏 > 0,
(2) 

𝜌(𝜍) = 𝜓(𝜍) ,  - 𝜏 ≤ 𝜍 ≤ 0, 

     Lastly, Aydin and Mahmudov (Aydin & Mahmudov, 2022) were able 

to demonstrate relative controllability for the below differential neutral multi-

delayed system consisting of the classical Caputo fractional derivatives with 

non-permutable coefficient matrices 

𝔇 
ℭ

0+
𝛼 [𝜌(𝜍) −∑𝐻𝑘𝜌(𝜍 − 𝜏𝑘)

𝑑

𝑘=1

] = 𝑍𝜌(𝜍) +∑𝐴𝑘𝜌(𝜍 − 𝜏𝑘)

𝑑

𝑘=1

+ 𝑔(𝜍)
(3) 

𝜌(𝜍) = 𝜓(𝜍), − 𝜏 ≤ 𝜍 ≤ 0, 

Aydin and Mahmudov (Aydin & Mahmudov, 2022) have made 

analysis of existence uniqueness and stability for the following differential 

multi-delayed neutral system consisting of the Caputo derivative w.r.t another 

function 𝜗 with nonpermutable matrices 

ℶ0+
𝐶
𝜗
𝛼 [𝜌(𝜍) −∑𝐻𝑘𝜌(𝜍 − 𝜏𝑘)

𝑑

𝑘=1

] = 𝑍𝜌(𝜍) +∑ 𝐴𝑘𝜌(𝜍 − 𝜏𝑘)

𝑑

𝑘=1

+ 𝑔(𝜍), (4)
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𝜌(𝜍) = 𝜓(𝜍), − 𝜏 ≤ 𝜍 ≤ 0, 

where ℶ0+
𝐶
𝜗
𝛼  is the Caputo derivative w.r.t another function 𝜗 is of fractional order 

0 < 𝛼 < 1. 𝐻𝑘 , 𝑍, 𝐴𝑘 , 𝑘 = 1,2,3,… , 𝑑 are non-permutable 𝑛-by-𝑛 constant 

coefficient matrices  𝜏𝑘 > 0 is a delay for each of  𝑘 = 1,2,3,… , 𝑑  and   

𝜏 = max{𝜏𝑘: 𝑘 = 1,2,3, … , 𝑑 }.  𝑔 ∈ 𝐶([0, 𝑇] × ℝ𝑛, ℝ𝑛), 𝜓 ∈ 𝐶1([0, 𝑇], ℝ𝑛)  

with 𝑇 = 𝑙𝑑,  a fixed natural number 𝑙. Furthermore, I will relatively handle 

the  controllability of ${\vartheta}$-fractional differential neutral multi-

delayed equation having non-permutable coefficients (4) via 𝜗-multi-delayed 

perturbation of M-L functions   by taking inspiration from  the studies (Aydin 

& Mahmudov, 2022; Muthuvel, 2023; You et al., 2020).  

In the present work,  

 A notion of the 𝜗-Gramian matrix is given. 

 The sufficient and necessary circumstances are determined  so as 

to relatively demonstrate that the 𝜗-Caputo fractional linear multi-

delayed neutral equation is controllable. 

 The controllability outcomes of the 𝜗-Caputo fractional semi-linear 

multi-delayed neutral system  via the fixed point theorem of the 

Krasnoselskii. 

 The theoretical outcomes are illustrated. 

 

1. PRELIMINARIES 

With 𝑛,𝑚 being the natural numbers, 𝐶𝑚([0, 𝑇],ℝ𝑛) consists of such 

functions that they have continuous derivatives up to order 𝑚− 1. For 𝑚 =

1, it is endowed with the norm 

‖𝜌‖𝐶 = sup
𝜍 ∈ [0,𝑇]

‖𝜌(𝜍)‖ 

for an arbitrary norm ‖. ‖ on ℝ𝑛.  𝐴𝐶([0, 𝑇],ℝ𝑛) consists of all functions 

which are absolutely continuous on [0, 𝑇]. 𝐴𝐶𝑚([0, 𝑇], ℝ𝑛) consists of such 

functions that they have absolutely continuous derivatives up to order 𝑚 − 1.  

A norm for an arbitrary matrix 𝐵 ∈  ℝ𝑚×𝑚 

‖𝐵‖ = max
1≤𝑖≤𝑚

∑|𝑏𝑖𝑘|

𝑚

𝑘=1
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here,  𝑏𝑖𝑘 stands for the entries of 𝐵. With 𝑍1, 𝑍2 being Banach spaces, a 

Banach space 𝐵(𝑍1, 𝑍2) is consists of such linear operators that it is bounded 

from 𝑍1 to 𝑍2. 𝐿∞(𝐽, 𝑍2) is Banach with ‖. ‖𝐿∞(𝐽,𝑍2) for 𝐽 being an arbitrary 

closed bounded interval. Let such a continuously differentiable function 𝜗 on 

[0, 𝑇] that it is increasing and 𝜗′ (𝜍)  ≠ 0, 0 ≤ 𝜍 ≤ 𝑇. In (Almeida, 2017; 

Kilbas et al., 2006), R-L integral w.r.t another function 𝜗 of 𝜁 ∈ 𝐴𝐶𝑛 [0, 𝑇] of 

the fractional order 𝛼 > 0 is described as follows 

( ℷ𝜗
𝛼

0+
𝑅𝐿 𝜁)(𝜍) ∶=

1

Γ(𝑛 − 𝛼)
∫ (𝜗(𝜍) − 𝜗(𝑠))

𝛼−1
𝜍

0

𝜁(𝑠)𝑑𝜗(𝑠). 

R-L fractional derivatives w.r.t another function 𝜗 of 𝜁 ∈ 𝐴𝐶𝑛[0, 𝑇] of order 

𝛼 > 0 are defined as follows  

( ℶ𝜗
𝛼

0+
𝑅𝐿 𝜁)(𝜍) =

1

Γ(𝑛 − 𝛼)
(

𝑑

𝑑𝜗(𝜍)
)
𝑛

∫ (𝜗(𝜍) − 𝜗(𝑠))
𝑛−𝛼−1

𝜍

0

𝜁(𝑠)𝑑𝜗(𝑠), 

where 𝑛 = [𝛼] + 1. Let 𝜁 ∈ 𝐴𝐶𝑛([0, 𝑇],ℝ) and let 𝜗 ∈ 𝐶𝑛([0, 𝑇], ℝ𝑛) be 

increasing with 𝜗′(𝜍) ≠ 0 for 𝜍 ∈ [0, 𝑇], then the Caputo derivatives w.r.t 

another function 𝜗 of 𝜁 of the fractional order 𝛼 is described as noted below 

ℶ𝜗
𝛼

0+
𝐶 𝜁(𝜍) ∶=  ℷ𝜗

𝑛−𝛼
0+
𝑅𝐿 (

𝑑

𝑑𝜗(𝜍)
)
𝑛

𝜁(𝜍). 

Defnition 1.1 (Aydin & Mahmudov, 2022a) System (4) is said to be relatively 

controllable, when there exists such a square integrable control 𝑣 that 

equations (4) is of  𝜌 ∈ 𝐶1([−𝜏, 𝜍], ℝ𝑛) that satisfies the initial 𝜌(𝜍) = 𝜓(𝜍) 

for 𝜍 ∈ [−𝜏, 0] and 𝜌(𝜎) =  𝜌𝜎, where an arbitrary final state 𝜌(𝜎) ∈ ℝ𝑛 with 

an arbitrary time 𝜎, and an arbitrary initial function 𝜓 ∈ 𝐶1([−𝜏, 0], ℝ𝑛). 

Theorem 1.1 (Aydin & Mahmudov, 2022b) The continuous solution to the 

system (4) can be offered by 

𝜌(𝜍) = [𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜍, 0) − ∑𝐻𝑖𝒳𝛼,1,𝜗

𝐻,𝑍,𝐴

𝑑

𝑖=1

(𝜍, 𝜏𝑖)] 𝜓(0) + ∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜍, 𝑠)𝑔(𝑠, 𝜌(𝑠))𝑑𝜗(𝑠)

𝜍

0

 

 

               +∑∫ 𝒳𝛼,1,𝜗
𝐻,𝑍,𝐴

0

−𝜏𝑖

𝑑

𝑖=1

(𝜍, 𝑠 + 𝜏𝑖)[𝐻𝑖( ℶ𝜗
𝛼

0+
𝐶 𝜓)(𝑠) + 𝐴𝑖𝜓(𝑠)]𝑑𝜗(𝑠) 
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where the 𝜗-multi-delayed perturbation(MDP) of the M-L function 

 𝒳𝛼,𝛽,𝜗
𝐻,𝑍,𝐴(𝜍, 𝑠) =

{
 

 
                                                   Θ,                                               − 𝜏 ≤ 𝜍 < 0,   𝑠 ≥ 0,

∑ ∑ 𝒬𝑘+1
[𝜗(𝜍) − 𝜗(𝑠 + ∑ 𝑖𝑗𝜏𝑗

𝑑
𝑗=1 )]

+

𝑘𝛼+𝛽−1

Γ(𝑘𝛼 + 𝛽)

∞

𝑖1 ,𝑖2 ,…,𝑖𝑑=0

∞

𝑘=0

, 𝜍 ≥ 0, 𝑠 ≥ 0,
 (5) 

and 𝒬𝑘+1 ∶= 𝑄𝑘+1(𝑖1𝜏1, … , 𝑖𝑑 , 𝜏𝑑), 𝐴 = ∑ 𝐴𝑘
𝑑
𝑘=1 ,   𝐻 = ∑ 𝐻𝑘

𝑑
𝑘=1 , [𝜍]+ =

max (0, 𝜍), and 

𝑄𝑗+1(𝑠1, 𝑠2, … , 𝑠𝑑) = 𝐵𝑄𝑗(𝑠1, 𝑠2, … , 𝑠𝑑) +∑ 𝐹𝑘

𝑑

𝑘=1

𝑄𝑗(𝑠1, 𝑠2, … , 𝑠𝑘 − 𝜏𝑘 , … , 𝑠𝑑) 

                                    +∑𝐴𝑘

𝑑

𝑘=1

𝑄𝑗+1(𝑠1, 𝑠2, … , 𝑠𝑘 − 𝜏𝑘 , … , 𝑠𝑑),  

𝑄𝑗(𝑠1, … , −𝜏𝑑) = Θ = 𝑄𝑗(−𝜏𝑑 , … , 𝑠1) = 𝑄0(𝑠1, 𝑠2, … , 𝑠𝑑), 

 

𝑄1(0,… ,0) = 𝐼,         𝑠𝑖 ≠ 0,𝑄1(𝑠1, 𝑠2, … , 𝑠𝑑) = Θ 

where I and Θ are the unit and zero matrices, respectively. 

 

2. PRINCIPLE CONTRIBUTIONS 

From here on, we offer our main contributions. 

Theorem 2.1 The 𝜗-MDP function 𝒳𝛼,𝛽,𝜗
𝐻,𝑍,𝐴(𝜍, 𝑠) is continuous in 

0 < 𝑠 < 𝜍 < ∞.  

Proof. For an arbitrary 𝜍0 > 0 and a fixed 𝑠0 > 0, we consider 
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lim
𝜍→𝜍0

𝒳𝛼,𝛽,𝜗
𝐻,𝑍,𝐴(𝜍, 𝑠0) = lim

𝜍→𝜍0
∑ ∑ 𝒬𝑘+1

[𝜗(𝜍) − 𝜗(𝑠0 + ∑ 𝑖𝑗𝜏𝑗
𝑑
𝑗=1 )]

+

𝑘𝛼+𝛽−1

Γ(𝑘𝛼 + 𝛽)

∞

𝑖1 ,𝑖2 ,…,𝑖𝑑=0

∞

𝑘=0

 

                                  = ∑ ∑ 𝒬𝑘+1 lim
𝜍→𝜍0

[𝜗(𝑡) − 𝜗(𝑠0 + ∑ 𝑖𝑗𝜏𝑗
𝑑
𝑗=1 )]

+

𝑘𝛼+𝛽−1

Γ(𝑘𝛼 + 𝛽)

∞

𝑖1 ,𝑖2 ,…,𝑖𝑑=0

∞

𝑘=0

 

                          = ∑ ∑ 𝒬𝑘+1

∞

𝑖1 ,𝑖2 ,…,𝑖𝑑=0

∞

𝑘=0

[𝜗(𝜍0) − 𝜗(𝑠0 + ∑ 𝑖𝑗𝜏𝑗
𝑑
𝑗=1 )]

+

𝑘𝛼+𝛽−1

Γ(𝑘𝛼 + 𝛽)
 

 

                                  = 𝒳𝛼,𝛽,𝜗
𝐻,𝑍,𝐴(𝜍0, 𝑠0 ). 

            Lemma 2.1. The function 𝒳𝛼,𝛽,𝜗
𝐻,𝑍,𝐴

 which is defined as in (5) satisfies 

the following expressions. 

(𝒳𝛼,𝛽,𝜗
𝐻,𝑍,𝐴)

𝑇
(𝜍, 𝑠) = 𝒳𝛼,𝛽,𝜗

𝐻𝑇,𝑍𝑇,𝐴𝑇(𝜍, 𝑠) 

and 

∫ 𝒳𝛼,𝛽,𝜗
𝐻,𝑍,𝐴

𝜍

0

 (𝜍, 𝑠) 𝑑𝜗(𝑠) ≤ (𝜗(𝜍) − 𝜗(0))𝒳𝛼,𝛽,𝜗
𝐻,𝑍,𝐴(𝜍, 0). 

where .𝑇 stands for the transpose of an arbitrary matrix. 

Proof. We firstly consider the first item as follows 

(𝒳𝛼,𝛽,𝜗
𝐻,𝑍,𝐴)

𝑇
(𝜍, 𝑠) = [∑ ∑ 𝒬𝑘+1  

[𝜗(𝜍) − 𝜗(𝑠 + ∑ 𝑖𝑗𝜏𝑗
𝑑
𝑗=1 )]

+

𝑘𝛼+𝛽−1

Γ(𝑘𝛼 + 𝛽)

∞

𝑖1 ,𝑖2 ,…,𝑖𝑑=0

∞

𝑘=0

]

𝑇

 

                       = ∑ ∑ 𝒬𝑘+1
𝑇  

[𝜗(𝜍) − 𝜗(𝑠 + ∑ 𝑖𝑗𝜏𝑗
𝑑
𝑗=1 )]

+

𝑘𝛼+𝛽−1

Γ(𝑘𝛼 + 𝛽)

∞

𝑖1,𝑖2,…,𝑖𝑑=0

∞

𝑘=0

 

 

                                ∶= 𝒳𝛼,𝛽,𝜗
𝐻𝑇,𝑍𝑇 ,𝐴𝑇(𝜍, 𝑠), 

and we secondly take the second item into consideration 
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∫ 𝒳𝛼,𝛽,𝜗
𝐻,𝑍,𝐴

𝜍

0

 (𝜍, 𝑠) 𝑑𝜗(𝑠) = ∫ ∑ ∑ 𝒬𝑘+1  
[𝜗(𝜍) − 𝜗(𝑠 + ∑ 𝑖𝑗𝜏𝑗

𝑑
𝑗=1 )]

+

𝑘𝛼+𝛽−1

Γ(𝑘𝛼 + 𝛽)

∞

𝑖1 ,𝑖2 ,…,𝑖𝑑=0

∞

𝑘=0

𝜍

0

𝑑𝜗(𝑠) 

                                         ≤ ∑ ∑ 𝒬𝑘+1  
[𝜗(𝜍) − 𝜗(𝑠 + ∑ 𝑖𝑗𝜏𝑗

𝑑
𝑗=1 )]

+

𝑘𝛼+𝛽−1

Γ(𝑘𝛼 + 𝛽)

∞

𝑖1 ,𝑖2 ,…,𝑖𝑑=0

∞

𝑘=0

∫ 𝑑𝜗(𝑠)
𝜍

0

 

                                            = (𝜗(𝜍) − 𝜗(0))𝒳𝛼,𝛽,𝜗
𝐻,𝑍,𝐴(𝜍, 0). 

Lemma 2.2 If 𝛼 ∈ (0,1) and 𝛽 ∈ (0,1] satisfies 𝛼 + 𝛽 > 1, then the 

below inequality holds true 

‖𝒳𝛼,𝛽,𝜗
𝐻,𝑍,𝐴(𝜍, 𝑠)‖ ≤ 𝒳𝛼,𝛽,𝜗

‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜍, 𝑠), 

for all 𝜍 ≥ 0, a fixed 𝑠 ≥ 0. 

Proof. By implementing the triangle inequality, one acquires 

‖𝒳𝛼,𝛽,𝜗
𝐻,𝑍,𝐴(𝜍, 𝑠)‖ = ‖∑ ∑ 𝒬𝑘+1  

[𝜗(𝜍) − 𝜗(𝑠 + ∑ 𝑖𝑗𝜏𝑗
𝑑
𝑗=1 )]

+

𝑘𝛼+𝛽−1

Γ(𝑘𝛼 + 𝛽)

∞

𝑖1,𝑖2,…,𝑖𝑑=0

∞

𝑘=0

‖ 

                          ≤ ∑ ∑ ‖𝒬𝑘+1‖  
[𝜗(𝜍) − 𝜗(𝑠 + ∑ 𝑖𝑗𝜏𝑗

𝑑
𝑗=1 )]

+

𝑘𝛼+𝛽−1

Γ(𝑘𝛼 + 𝛽)

∞

𝑖1,𝑖2,…,𝑖𝑑=0

∞

𝑘=0

 

                          ∶= 𝒳𝛼,𝛽,𝜗
‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜍, 𝑠) 

We have two cases to investigate, the first case: 𝑔(𝜍, 𝜌(𝜍)) = 0, 𝜍 ∈ [0, 𝜎] =

𝐽, that is, 

ℶ𝜗
𝛼

0+
𝐶 [𝜌(𝜍) −∑𝐻𝑗𝜌(𝜍 − 𝜏𝑗)

𝑑

𝑗=1

] = 𝑍𝜌(𝜍) +∑𝐴𝑗𝜌(𝜍 − 𝜏𝑗) + 𝑆𝜐(𝜍), 𝜍 > 0,

𝑑

𝑗=1

 

𝜌(𝜍) = 𝜓(𝜍), −𝜏 ≤ 𝜍 ≤ 0, 

(6) 

whose solution is 

𝜌(𝜍) = [𝒳𝛼,1,𝜗
𝐻,𝑍,𝐴(𝜍, 0) − ∑ 𝐻𝑚

𝑑

𝑚=1

𝒳𝛼,1,𝜗
𝐻,𝑍,𝐴(𝜍, 𝜏𝑚)] 𝜓(0) + ∫ 𝒳𝛼,𝛼,𝜗

𝐻,𝑍,𝐴(𝜍, 𝑥)
𝜍

0

𝑆𝜐(𝑥)𝑑𝜗(𝑥) 

                  + ∑ ∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜍, 𝑥 + 𝜏𝑚)

0

−𝜏𝑚

𝑑

𝑚=1

[𝐻𝑚( ℶ𝜗
𝛼

0+
𝐶 𝜓)(𝑥) + 𝐴𝑚𝜓(𝑥)]𝑑𝜗(𝑥) 
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Note that for simplicity, we use 𝜗𝑢
𝜐 = 𝜗(𝜐) − 𝜗(𝑢), 𝑢, 𝜐 ∈ 𝐽. So, we have

𝜗0
𝜍
= 𝜗(𝜍) − 𝜗(𝑢0). Then

∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜍, 𝑠)

𝜍

0

𝑑𝜗(𝑠) ≤  𝜗0
𝜍
𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜍, 0).

Now, we will offer a representation of 𝜗-multi-delayed Gramian matrix below 

𝔐𝜏,𝛼,𝜗[0, 𝜎] = ∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑠)

𝜍

0

𝑆𝑆𝑇𝒳𝛼,𝛼,𝜗
𝐻𝑇,𝑍𝑇,𝐴𝑇(𝜎, 𝑠)𝑑𝜗(𝑠)

where 𝐻𝑇 = ∑ 𝐻𝑛
𝑇𝑑

𝑛=1  and 𝐴𝑇 = ∑ 𝐴𝑛
𝑇𝑑

𝑛=1 . 

Theorem 2.2 𝔐𝜏,𝛼,𝜗[0, 𝜎]is invertible if and only if the system (6) is

relatively controllable . 

Proof. Sufficiency: Assume that 𝔐𝜏,𝛼,𝜗[0, 𝜎] is not invertible. Then if

we see columns of 𝔐𝜏,𝛼,𝜗[0, 𝜎] as vectors, then they are dependent and so

there is at least such a coeffcient vector 𝑏 ∈ ℝ𝑛 that

𝔐𝜏,𝛼,𝜗[0, 𝜎]𝑏 = 0.

One acquires 

0 = 𝑏𝑇𝔐𝜏,𝛼,𝜗[0, 𝜎]𝑏 = 𝑏
𝑇∫ 𝒳𝛼,𝛼,𝜗

𝐻,𝑍,𝐴(𝜎, 𝑠)
𝜎

0

𝑆𝑆𝑇𝒳𝛼,𝛼,𝜗
𝐻𝑇,𝑍𝑇,𝐴𝑇(𝜎, 𝑠)𝑑𝜗𝑏

= ∫ ‖𝑏𝑇𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑠)𝑆‖

2
𝑑𝜗(𝑠),

𝜎

0

which shows that 

𝑏𝑇𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑠)𝑆 = 0,    0 ≤ 𝑠 ≤ 𝜎.

Because of the relative controllability of system (6), there exist control 

functions 𝜐1, 𝜐2 ∈ 𝐿
2(𝐽, ℝ𝑛) for the final function states 0, 𝑏 ∈ ℝ𝑛 with time

𝜎, such that system (6) is of a solution 𝜌 ∈ 𝐶1([−𝜏, 𝜎], ℝ𝑛) satisfying

𝜌(𝜎) = 0 and 𝜌(𝜎) = 𝑏 together with the initial  𝜓, i.e., 

𝜌(𝜎) = [𝒳𝛼,1,𝜗
𝐻,𝑍,𝐴(𝜎, 0) − ∑ 𝐻𝑚

𝑑

𝑚=1

𝒳𝛼,1,𝜗
𝐻,𝑍,𝐴(𝜎, 𝜏𝑚)]𝜓(0)
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+ ∑ ∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑥 + 𝜏𝑚)

0

−𝜏𝑚

𝑑

𝑚=1

[𝐻𝑚( ℶ𝜗
𝛼

0+
𝐶 𝜓)(𝑥) + 𝐴𝑚𝜓(𝑥)]𝑑𝜗(𝑥)

+∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑥)

𝜎

0

𝑆𝜐1(𝑥)𝑑𝜗(𝑥) = 0

and 

𝜌(𝜎) = [𝒳𝛼,1,𝜗
𝐻,𝑍,𝐴(𝜎, 0) − ∑ 𝐻𝑚

𝑑

𝑚=1

𝒳𝛼,1,𝜗
𝐻,𝑍,𝐴(𝜎, 𝜏𝑚)]𝜓(0)

+ ∑ ∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑥 + 𝜏𝑚)

0

−𝜏𝑚

𝑑

𝑚=1

[𝐻𝑚( ℶ𝜗
𝛼

0+
𝐶 𝜓)(𝑥) + 𝐴𝑚𝜓(𝑥)]𝑑𝜗(𝑥)

+∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑥)

𝜎

0

𝑆𝜐2(𝑥)𝑑𝜗(𝑥) = 𝑏

One can easily acquire 

𝑏 = ∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑥)

𝜎

0

𝑆[𝜐2(𝑥) − 𝜐1(𝑥)]𝑑𝜗(𝑥)

one obtains the following from the just-above equality by multiplying by𝑔𝑇 ,

𝑏𝑇𝑏 = ∫ 𝑏𝑇𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑥)

𝜎

0

𝑆[𝜐2(𝑥) − 𝜐1(𝑥)]𝑑𝜗(𝑥)

This together with (8) shows 𝑏 =  0. It is impossible because 𝑔 was a 

nonzero. 

Necessity: Because 𝔐𝜏,𝛼,𝜗[0, 𝜎]is invertible, then (𝔐𝜏,𝛼,𝜗[0, 𝜎] )
−1

exists.

The 

just-below control function for an arbitrary final state g can be chosen 

𝑣(𝑠) = (𝑆𝑇𝒳𝛼,𝛼,𝜗
𝐻𝑇,𝑍𝑇,𝐴𝑇(𝜎, 𝑠)) (𝔐𝜏,𝛼,𝜗[0, 𝜎] )

−1
𝜂

where 

 𝜂 = 𝑏 − [𝒳𝛼,1,𝜗
𝐻,𝑍,𝐴(𝜎, 0) − ∑ 𝐻𝑚

𝑑

𝑚=1

𝒳𝛼,1,𝜗
𝐻,𝑍,𝐴(𝜎, 𝜏𝑚)]𝜓(0)
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          − ∑ ∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑥 + 𝜏𝑚)

0

−𝜏𝑚

𝑑

𝑚=1

[𝐻𝑚( ℶ𝜗
𝛼

0+
𝐶 𝜓)(𝑥) + 𝐴𝑚𝜓(𝑥)]𝑑𝜗(𝑥). 

Then, 

      𝜌(𝜎) = [𝒳𝛼,1,𝜗
𝐻,𝑍,𝐴(𝜎, 0) − ∑ 𝐻𝑚

𝑑

𝑚=1

𝒳𝛼,1,𝜗
𝐻,𝑍,𝐴(𝜎, 𝜏𝑚)]𝜓(0) 

               + ∑ ∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑥 + 𝜏𝑚)

0

−𝜏𝑚

𝑑

𝑚=1

[𝐻𝑚( ℶ𝜗
𝛼

0+
𝐶 𝜓)(𝑥) + 𝐴𝑚𝜓(𝑥)]𝑑𝜗(𝑥) 

                +∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑥)

𝜎

0

𝑆𝑣(𝑥)𝑑𝜗(𝑥) 

                = [𝒳𝛼,1,𝜗
𝐻,𝑍,𝐴(𝜎, 0) − ∑ 𝐻𝑚

𝑑

𝑚=1

𝒳𝛼,1,𝜗
𝐻,𝑍,𝐴(𝜎, 𝜏𝑚)]𝜓(0) 

               + ∑ ∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑥 + 𝜏𝑚)

0

−𝜏𝑚

𝑑

𝑚=1

[𝐻𝑚( ℶ𝜗
𝛼

0+
𝐶 𝜓)(𝑥) + 𝐴𝑚𝜓(𝑥)]𝑑𝜗(𝑥) 

               +∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑥)

𝜎

0

𝑆 (𝑆𝑇𝒳𝛼,𝛼,𝜗
𝐻𝑇,𝑍𝑇,𝐴𝑇(𝜎, 𝑠)) (𝔐𝜏,𝛼,𝜗[0, 𝜎] )

−1
𝜂𝑑𝜗(𝑥) 

         = [𝒳𝛼,1,𝜗
𝐻,𝑍,𝐴(𝜎, 0) − ∑ 𝐻𝑚

𝑑

𝑚=1

𝒳𝛼,1,𝜗
𝐻,𝑍,𝐴(𝜎, 𝜏𝑚)]𝜓(0) 

        + ∑ ∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑥 + 𝜏𝑚)

0

−𝜏𝑚

𝑑

𝑚=1

[𝐻𝑚( ℶ𝜗
𝛼

0+
𝐶 𝜓)(𝑥) + 𝐴𝑚𝜓(𝑥)]𝑑𝜗(𝑥) + 𝜂 

         = 𝑏. 

Now we investigate the second case:𝑔(𝜍, 𝜌(𝜍)) ≠ ℝ𝑛, 𝜍 ∈ 𝐽 = [0, 𝜎], that is, 

ℶ0+
𝐶

𝜗
𝛼 [𝜌(𝜍) − ∑ 𝐻𝑘𝜌(𝜍 − 𝜏𝑘)

𝑑

𝑘=1

] = 𝑍𝜌(𝜍) + ∑ 𝐴𝑘𝜌(𝜍 − 𝜏𝑘)

𝑑

𝑘=1

+ 𝑆𝑣(𝜍) + 𝑔(𝜍, 𝜌(𝜍)), 
(9) 

𝜌(𝜍) = 𝜓(𝜍), − 𝜏 ≤ 𝜍 ≤ 0, 

with the solution of a form 
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𝜌(𝜍) = [𝒳𝛼,1,𝜗
𝐻,𝑍,𝐴(𝜍, 0) − ∑ 𝐻𝑚

𝑑

𝑚=1

𝒳𝛼,1,𝜗
𝐻,𝑍,𝐴(𝜍, 𝜏𝑚)] 𝜓(0) + ∫ 𝒳𝛼,𝛼,𝜗

𝐻,𝑍,𝐴(𝜍, 𝑥)
𝜍

0

𝑆𝜐(𝑥)𝑑𝜗(𝑥) 

(10)                   + ∑ ∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜍, 𝑥 + 𝜏𝑚)

0

−𝜏𝑚

𝑑

𝑚=1

[𝐻𝑚( ℶ𝜗
𝛼

0+
𝐶 𝜓)(𝑥) + 𝐴𝑚𝜓(𝑥)]𝑑𝜗(𝑥) 

                 + ∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜍, 𝑥)

𝜍

0

𝑔(x, 𝜌(𝑥))𝑑𝜗(𝑥). 

Now, we need extra assumptions 

(𝑶𝟏) 𝔐𝜗,𝑐 is an operatör from 𝐿2(𝐽 × ℝ𝑛) to ℝ𝑛 offered by 

𝔐𝜗,𝑐𝑣 = ∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑥)

𝜎

0

𝑆𝜐(𝑥)𝑑𝜗(𝑥), 

has an inverse operator (𝔐𝜗,𝑐)
−1

 taking values from 𝐿2(𝐽 × ℝ𝑛)/ 𝑘𝑒𝑟𝔐𝜗,𝑐. 

(𝑶𝟐) 𝑔 is continuous from 𝐽 × ℝ𝑛 to ℝ𝑛 and 𝐿𝑔(. ) ∈ 𝐿
∞(𝐽, ℝ𝑛) such 

that for 𝜌, 𝑤 ∈ ℝ𝑛  

‖𝑔(𝜍, 𝜌(𝜍)) − 𝑔(𝜍, 𝑤(𝜍))‖ ≤ 𝐿𝑔(𝜍)‖𝜌(𝜍) − 𝑤(𝜍)‖, 𝜍 ∈ 𝐽.  

Setting: 

𝑅 = ‖𝔐𝜗,𝑐‖𝐵(ℝ𝑛, 𝐿2(𝐽×ℝ𝑛)/ 𝑘𝑒𝑟𝔐𝜗,𝑐)

−1
, 

      𝑅1 = 𝒳𝛼,1,𝜗
‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 0)‖𝜓(0)‖ + ∑‖𝐻𝑚‖

𝑑

𝑚=1

𝒳𝛼,1,𝜗
‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 𝜏𝑚)‖𝜓(0)‖ 

            + ∑ ∫ 𝒳𝛼,𝛼,𝜗
‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 𝑥 + 𝜏𝑚)

0

−𝜏𝑚

𝑑

𝑚=1

‖𝐻𝑚( ℶ𝜗
𝛼

0+
𝐶 𝜓)(𝑥) + 𝐴𝑚𝜓(𝑥)‖𝑑𝜗(𝑥) 

            +𝑁𝑔𝜗0
𝜎𝒳𝛼,𝛼,𝜗

‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 0), 

and 

      𝑅2 = 𝜗0
𝜎𝒳𝛼,𝛼,𝜗

‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 0)‖𝐿𝑔‖𝐿∞(𝐽,ℝ𝑛)
 

where 𝑁𝑔 = 𝑚𝑎𝑥𝜍∈[0,𝜎]‖𝑔(𝜍, 0)‖.  The below information follows from (Wang et 

al., 2017) that 

𝑅 = √‖𝔐𝜏,𝛼,𝜗[0, 𝜎]‖. 
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Theorem 2.3 Let 𝛼 ∈ [0.5,1). (𝑶𝟏) and (𝑶𝟐) are satisfied. Equations 

(9) are  relatively controllable provided that  

      𝑅2 (1 + 𝜗0
𝜎𝒳𝛼,𝛼,𝜗

‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 0)‖𝑆‖𝑅) < 1. (11) 

Proof. Based on (𝑶𝟏) the following control operator 𝑣𝜌(𝜍) can be 

defined by 

𝑣𝜌(𝜍) = (𝔐𝜗,𝑐)
−1
[𝜌𝜎 − 𝒳𝛼,1,𝜗

𝐻,𝑍,𝐴(𝜎, 0)𝜓(0) −∑𝐻𝑚

𝑑

𝑚=1

𝒳𝛼,1,𝜗
𝐻,𝑍,𝐴(𝜎, 𝜏𝑚)𝜓(0) 

(12) − ∑ ∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑥 + 𝜏𝑚)

0

−𝜏𝑚

𝑑

𝑚=1

[𝐻𝑚( ℶ𝜗
𝛼

0+
𝐶 𝜓)(𝑥) + 𝐴𝑚𝜓(𝑥)]𝑑𝜗(𝑥) 

                 − ∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑥)

𝜎

0

𝑔(x, 𝜌(𝑥))𝑑𝜗(𝑥)] (𝜍). 

By using the control operator, one can describe  𝒦:𝐶 = 𝐶(𝐽, ℝ𝑛) → 𝐶 by 

𝒦𝜌(𝜍) = [𝒳𝛼,1,𝜗
𝐻,𝑍,𝐴(𝜍, 0) − ∑ 𝐻𝑚

𝑑

𝑚=1

𝒳𝛼,1,𝜗
𝐻,𝑍,𝐴(𝜍, 𝜏𝑚)] 𝜓(0) + ∫ 𝒳𝛼,𝛼,𝜗

𝐻,𝑍,𝐴(𝜍, 𝑥)
𝜍

0

𝑆𝜐𝜌(𝑥)𝑑𝜗(𝑥) 

(13)              + ∑ ∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜍, 𝑥 + 𝜏𝑚)

0

−𝜏𝑚

𝑑

𝑚=1

[𝐻𝑚( ℶ𝜗
𝛼

0+
𝐶 𝜓)(𝑥) + 𝐴𝑚𝜓(𝑥)]𝑑𝜗(𝑥) 

            + ∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜍, 𝑥)

𝜍

0

𝑔(x, 𝜌(𝑥))𝑑𝜗(𝑥). 

which has a fixed point 𝜌 satisfying system (9). When keeping in mind the 

definition of relative controllability, equations (9) with (12) is relatively 

controllable iff (13) has a solution 𝜌 ∈  𝐶([−𝜏, 𝜎], ℝ𝑛) so that 𝜌(𝜎) = 𝜌𝜎 and 

𝜌(𝜍) = 𝜓(𝜍), 𝜍 ∈ [−𝜏, 0]. It is well-known that for each 𝜀 > 0,  𝒟𝜀 =

{𝜌 ∈ 𝐶: ‖𝜌‖𝐶 < 𝜀} is a both convex and bounded set which is closed.  The 

rest of the proof is divided into three stages so as to get it understandable. 

Step 1: We are going to determine at least  𝜀 > 0 such that 

𝒦(𝒟𝜀) ⊆ 𝒟𝜀 . 

In the light of (𝑶𝟏) and (𝑶𝟐)   and Lemma 2.1 and Hölder inequality, we get 

the following inequality for the norm of the control 𝑣𝜌(𝜍) 
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‖𝑣𝜌(𝜍)‖ = ‖(𝔐𝜗,𝑐)
−1
‖ [‖𝜌𝜎‖ + ‖𝒳𝛼,1,𝜗

𝐻,𝑍,𝐴(𝜎, 0)‖‖𝜓(0)‖ + ‖∑ 𝐻𝑚

𝑑

𝑚=1

𝒳𝛼,1,𝜗
𝐻,𝑍,𝐴(𝜎, 𝜏𝑚)‖ ‖𝜓(0)‖ 

                + ∑ ∫ ‖𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑥 + 𝜏𝑚)‖

0

−𝜏𝑚

𝑑

𝑚=1

[‖𝐻𝑚( ℶ𝜗
𝛼

0+
𝐶 𝜓)(𝑥) + 𝐴𝑚𝜓(𝑥)‖]𝑑𝜗(𝑥) 

               + ∫ ‖𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑥)‖

𝜎

0

‖𝑔(x, 𝜌(𝑥))‖𝑑𝜗(𝑥)] 

               ≤ 𝑅 [‖𝜌𝜎‖ + 𝒳𝛼,1,𝜗
‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 0)‖𝜓(0)‖ + ∑‖𝐻𝑚‖

𝑑

𝑚=1

𝒳𝛼,1,𝜗
‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 𝜏𝑚)‖𝜓(0)‖ 

              + ∑ ∫ 𝒳𝛼,𝛼,𝜗
‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 𝑥 + 𝜏𝑚)

0

−𝜏𝑚

𝑑

𝑚=1

‖𝐻𝑚( ℶ𝜗
𝛼

0+
𝐶 𝜓)(𝑥) + 𝐴𝑚𝜓(𝑥)‖𝑑𝜗(𝑥) 

             + ∫ ‖𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑥)‖

𝜎

0

(‖𝑔(x, 𝜌(𝑥)) − 𝑔(x, 0)‖ + ‖𝑔(x, 0)‖)𝑑𝜗(𝑥)] 

              ≤ 𝑅 [‖𝜌𝜎‖ + 𝒳𝛼,1,𝜗
‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 0)‖𝜓(0)‖ + ∑‖𝐻𝑚‖

𝑑

𝑚=1

𝒳𝛼,1,𝜗
‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 𝜏𝑚)‖𝜓(0)‖ 

              + ∑ ∫ 𝒳𝛼,𝛼,𝜗
‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 𝑥 + 𝜏𝑚)

0

−𝜏𝑚

𝑑

𝑚=1

‖𝐻𝑚( ℶ𝜗
𝛼

0+
𝐶 𝜓)(𝑥) + 𝐴𝑚𝜓(𝑥)‖𝑑𝜗(𝑥) 

+∫ ‖𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑥)‖

𝜎

0

𝑑𝜗(𝑥)‖𝐿𝑔‖𝐿∞(𝐽,ℝ𝑛)
‖𝜌‖𝐶  +𝑁𝑔 ∫ ‖𝒳𝛼,𝛼,𝜗

𝐻,𝑍,𝐴(𝜎, 𝑥)‖
𝜎

0

𝑑𝜗(𝑥) 

            ≤ 𝑅‖𝜌𝜎‖ + 𝑅𝑅1 + 𝑅𝑅2‖𝜌‖𝐶 . 

To find such 𝜀 > 0 that 𝒦𝜌(𝜍) ∈ 𝒟𝜀, we consider by using (𝑶𝟏) and (𝑶𝟐)  

and Lemma 2.1, 

‖𝒦𝜌(𝜍)‖ ≤ 𝑅 [𝒳𝛼,1,𝜗
‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 0)‖𝜓(0)‖ + ∑‖𝐻𝑚‖

𝑑

𝑚=1

𝒳𝛼,1,𝜗
‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 𝜏𝑚)‖𝜓(0)‖ 

              + ∑ ∫ 𝒳𝛼,𝛼,𝜗
‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 𝑥 + 𝜏𝑚)

0

−𝜏𝑚

𝑑

𝑚=1

‖𝐻𝑚( ℶ𝜗
𝛼

0+
𝐶 𝜓)(𝑥) + 𝐴𝑚𝜓(𝑥)‖𝑑𝜗(𝑥) 
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+∫ 𝒳𝛼,𝛼,𝜗
‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 𝑥)

𝜎

0

‖𝑔(x, 𝜌(𝑥))‖𝑑𝜗(𝑥) + ∫ 𝒳𝛼,𝛼,𝜗
‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 𝑥)

𝜎

0

‖𝑣𝜌(𝑥)‖𝑑𝜗(𝑥)].

When the just-above control estimation is applied, one can acquire 

‖𝒦𝜌(𝜍)‖ ≤ (1 + 𝜗0
𝜎𝒳𝛼,𝛼,𝜗

‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 0)‖𝑆‖𝑅) 𝑅1 + (𝜗0
𝜎𝒳𝛼,𝛼,𝜗

‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 0)‖𝑆‖𝑅) ‖𝜌𝜎‖

+ (1 + 𝜗0
𝜎𝒳𝛼,𝛼,𝜗

‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 0)‖𝑆‖𝑅) 𝑅2‖𝜌‖𝐶

 ≤ (1 + 𝜗0
𝜎𝒳𝛼,𝛼,𝜗

‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 0)‖𝑆‖𝑅) 𝑅1 + (𝜗0
𝜎𝒳𝛼,𝛼,𝜗

‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 0)‖𝑆‖𝑅) ‖𝜌𝜎‖

+ (1 + 𝜗0
𝜎𝒳𝛼,𝛼,𝜗

‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 0)‖𝑆‖𝑅) 𝑅2𝜀 ≔ 𝜀.

One can easily obtain 

𝜀 =
(1 + 𝜗0

𝜎𝒳𝛼,𝛼,𝜗
‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 0)‖𝑆‖𝑅) 𝑅1 + (𝜗0

𝜎𝒳𝛼,𝛼,𝜗
‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 0)‖𝑆‖𝑅) ‖𝜌𝜎‖

1 − (1 + 𝜗0
𝜎𝒳𝛼,𝛼,𝜗

‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 0)‖𝑆‖𝑅) 𝑅2
> 0

which provides 𝒦(𝒟𝜀) ⊆ 𝒟𝜀 . We will separate 𝒦 into two distinct operators

𝒦1 and 𝒦2 on 𝒟𝜀 like noted below:

𝒦1𝜌(𝜍) = [𝒳𝛼,1,𝜗
𝐻,𝑍,𝐴(𝜍, 0) − ∑ 𝐻𝑚

𝑑

𝑚=1

𝒳𝛼,1,𝜗
𝐻,𝑍,𝐴(𝜍, 𝜏𝑚)] 𝜓(0) + ∫ 𝒳𝛼,𝛼,𝜗

𝐻,𝑍,𝐴(𝜍, 𝑥)
𝜍

0

𝑆𝜐𝜌(𝑥)𝑑𝜗(𝑥)

(14) 

+ ∑ ∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜍, 𝑥 + 𝜏𝑚)

0

−𝜏𝑚

𝑑

𝑚=1

[𝐻𝑚( ℶ𝜗
𝛼

0+
𝐶 𝜓)(𝑥) + 𝐴𝑚𝜓(𝑥)]𝑑𝜗(𝑥)

and 

𝒦2𝜌(𝜍) = ∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜍, 𝑥)

𝜍

0

𝑔(x, 𝜌(𝑥))𝑑𝜗(𝑥). (15) 

Step 2: Our first task is to prove 𝒦1 is a contraction. Assume 𝜌, 𝑢 ∈ 𝒟𝜀.

Keeping (𝑶𝟏) and (𝑶𝟐) in mind, we get

‖𝑣𝜌(𝜍) − 𝑣𝑢(𝜍)‖ ≤ ∫ ‖𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑥)‖

𝜎

0

‖𝑔(x, 𝜌(𝑥)) − 𝑔(x, 0)‖𝑑𝜗(𝑥) 

 ≤ ∫ ‖𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑥)‖

𝜎

0

𝑑𝜗(𝑥)‖𝐿𝑔‖𝐿∞(𝐽,ℝ𝑛)
‖𝜌 − 𝑢‖𝐶

≤ 𝑅𝑅2‖𝜌 − 𝑢‖𝐶 .
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So 

‖𝒦1𝜌(𝜍) − 𝒦1𝑢(𝜍)‖ ≤ ∫ ‖𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜎, 𝑥)‖

𝜎

0

‖𝑆‖‖𝑣𝜌(𝑥) − 𝑣𝑢(𝑥)‖𝑑𝜗(𝑥) 

                                             ≤ 𝜗0
𝜎𝒳𝛼,𝛼,𝜗

‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 0)‖𝑆‖𝑅𝑅2‖𝜌 − 𝑢‖𝐶 . 

Since (11),  𝜗0
𝜎𝒳𝛼,𝛼,𝜗

‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 0)‖𝑆‖𝑅𝑅2 < 1, it shows a contradiction of  

𝒦1. 

Step 3: The rest thing to do is that  𝒦2 is a both continuous and 

compact function. Assume 𝜌𝑛 ∈ 𝒟𝜀 with 𝜌𝑛 → 𝜌 in 𝒟𝜀.  (𝑶𝟐) ensures 

𝑔(𝜍, 𝜌𝑛(𝜍)) → 𝑔(𝜍, 𝜌(𝜍)) in 𝐶. In the light of the dominated convergence 

theorem 

‖𝒦2𝜌(𝜍) − 𝒦2𝜌𝑛(𝜍)‖ ≤ ∫ ‖𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜍, 𝑥)‖

𝜍

0

‖𝑔(𝑥, 𝜌(𝑥)) − 𝑔(𝑥, 𝜌𝑛(𝑥))‖𝑑𝜗(𝑥) 

goes to zero as 𝑛 → ∞. Thus 𝒦2 is a continuous function in 𝒟𝜀. We have to 

prove that 𝒦2(𝒟𝜀) ⊆ 𝐶 is an equicontinuous and uniformly bounded operator 

so as to verify 𝒦2 is compact. For an arbitrary 𝜌 ∈ 𝒟𝜀, 0 < 𝜍 < 𝜍 + ℎ < 𝜎, 

𝒦2𝜌(𝜍 + ℎ) − 𝒦2𝜌(𝜍) = ∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜍 + ℎ, 𝑥)

𝜍+ℎ

𝜍

𝑔(x, 𝜌(𝑥))𝑑𝜗(𝑥) 

                                                + ∫ (𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜍 + ℎ, 𝑥) − 𝒳𝛼,𝛼,𝜗

𝐻,𝑍,𝐴(𝜍, 𝑥))
𝜍

0

𝑔(x, 𝜌(𝑥))𝑑𝜗(𝑥) 

Set the following notations: 

Δ1 = ∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜍 + ℎ, 𝑥)

𝜍+ℎ

𝜍

𝑔(x, 𝜌(𝑥))𝑑𝜗(𝑥), 

Δ2 = ∫ (𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜍 + ℎ, 𝑥) −𝒳𝛼,𝛼,𝜗

𝐻,𝑍,𝐴(𝜍, 𝑥))
𝜍

0

𝑔(x, 𝜌(𝑥))𝑑𝜗(𝑥). 

Since 

‖𝒦2𝜌(𝜍 + ℎ) −𝒦2𝜌(𝜍)‖ ≤ ‖Δ1‖ + ‖Δ2‖, 

it is enough to demonstrate that ‖Δ𝑖‖ → 0, ℎ → 0,  𝑖 = 1,2. By means of a 

simple calculation 
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‖Δ1‖ ≤ ∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜍 + ℎ, 𝑥)

𝜍+ℎ

𝜍

𝑑𝜗(𝑥)‖𝐿𝑔‖𝐿∞(𝐽,ℝ𝑛)
‖𝜌‖𝐶 

          +𝑁𝑔∫ 𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜍 + ℎ, 𝑥)

𝜍+ℎ

𝜍

𝑑𝜗(𝑥) 

          ≤ 𝜗𝜍
𝜍+ℎ

𝒳𝛼,𝛼,𝜗
‖𝐻‖,‖𝑍‖,‖𝐴‖(ℎ, 0)‖𝐿𝑔‖𝐿∞(𝐽,ℝ𝑛)

‖𝜌‖𝐶 + 𝑁𝑔𝜗𝜍
𝜍+ℎ

𝒳𝛼,𝛼,𝜗
‖𝐻‖,‖𝑍‖,‖𝐴‖(ℎ, 0) 

and 

‖Δ2‖ ≤ ∫ ‖𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜍 + ℎ, 𝑥) − 𝒳𝛼,𝛼,𝜗

𝐻,𝑍,𝐴(𝜍, 𝑥)‖
𝜍

0

𝑑𝜗(𝑥)‖𝐿𝑔‖𝐿∞(𝐽,ℝ𝑛)
‖𝜌‖𝐶 

          +𝑁𝑔∫ ‖𝒳𝛼,𝛼,𝜗
𝐻,𝑍,𝐴(𝜍 + ℎ, 𝑥) − 𝒳𝛼,𝛼,𝜗

𝐻,𝑍,𝐴(𝜍, 𝑥)‖
𝜍

0

𝑑𝜗(𝑥). 

Thus, ‖Δ𝑖‖ → 0, ℎ → 0,  𝑖 = 1,2. Consequently, we acquire for 𝜌 ∈ 𝒟𝜀, 

‖𝒦2𝜌(𝜍 + ℎ) −𝒦2𝜌(𝜍)‖ → 0, ℎ → 0 

𝒦2(𝒟𝜀) is bounded due to the following inequality as an upper bound 

‖𝒦2𝜌(𝜍)‖ ≤ 𝜗0
𝜎𝒳𝛼,𝛼,𝜗

‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 0)‖𝐿𝑔‖𝐿∞(𝐽,ℝ𝑛)
‖𝜌‖𝐶 + 𝑁𝑔𝜗0

𝜎𝒳𝛼,𝛼,𝜗
‖𝐻‖,‖𝑍‖,‖𝐴‖(𝜎, 0). 

So Arzela-Ascoli theorem provides 𝒦2(𝒟𝜀) is a continuous operator which is 

compact in 𝐶.  This completes the proof. 

Remark 2.1 All theoretical findings for selecting 𝑑 = 1 and 𝜏1 = 𝜏 

reduce to those ones of (Muthuvel et al., 2023). 

 

3. NUMERICAL EXAMPLES 

Now we illustrate theoretical outcomes. 

Example 3.1 We consider the below equation to exemplify the 

controllability of  the  homogeneous case: 

ℶ0+
𝐶
𝜗
𝛼 [𝜌(𝜍) − 𝐻1𝜌(𝜍 − 𝜏1)] = 𝑍𝜌(𝜍) +∑ 𝐴𝑘𝜌(𝜍 − 𝜏𝑘)

2

𝑘=1

+ 𝑆𝑣(𝜍), 𝜍 ∈ [0,2] 
(16) 

𝜌(𝜍) = 𝜓(𝜍), − − 0.3 ≤ 𝜍 ≤ 0, 

where 
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𝐻1 = ( 
0.8 0.1 0.2
0.3 0.4 0.6
0 0.7 0

) ,                   𝑍 = (
0.1 0 0.2
0 0.3 0.3
0.25 0 0

), 

 

𝐴1 = (
0.31 0.2 0
0.45 0.74 0.35
0.1 0.8 0.02

),          𝐴2 = (
0 0.72 0.36
0.83 0.64 0.78
0.21 0.08 0.12

),  

 

𝑆 = (
0.51 0 0
0.423 0.14 0.86
0.8 0.6 0.2

),  

𝜗(𝜍) = 2𝜍, 𝛼 = 0.7, 𝑟1 = 0.1, 𝑟2 = 0.3  and 𝜓(𝜍) = [𝜍 + 3 4𝜍 + 𝜋 5]𝑇 ∈

ℝ3. The multi-delayed neutral Gramian matrix is 

𝔐0.7,0.3,2𝑡[0,1] = ∫ 𝜒2𝑡,0.7,0.7
𝐴1,𝐵,𝐹1+𝐹2

1

0

(1, 𝑠)𝑆𝑆𝑇𝜒2𝑡,0.7,0.7
𝐴1,𝐵,𝐹1+𝐹2(1, 𝑠)𝑑𝜗(𝑠) 

= (
32.507 60.222 38.525
60.222 111.762 71.451
38.525 71.451 5.702

) 

We eaisly compute its determinant |𝔐0.7,0.3,2𝑡[0,1]| = 0.076. Thus, it is 

nonsingular. Equation (16) is relatively controllable based on Theorem 3, 

 

Example 2 We consider the below equation so as to illustrate the 

semilinear fractional differential neutral multi-delayed equation for 𝜍 ∈ [0,6] 

ℶ0+
𝐶

𝜗
𝛼[𝜌(𝜍) − 𝐻1𝜌(𝜍 − 0.4)] = 𝑍𝜌(𝑡) + 𝐴1𝜌(𝜍 − 0.5) + 𝑆𝑣(𝜍) + 𝑔(𝜍, 𝜌(𝜍)), 

(17) 
𝜌(𝜍) = 𝜓(𝜍), −0.5 ≤ 𝜍 ≤ 0, 

where 

𝐻1 = (
0.7 0
0.3 0.2

) ,            𝑍 = (
0 0.9
0.2 0.8

), 

𝐴1 = (
0.35 0.65
0 0.7

) ,      𝑆 = (
0.8 0
0.4 0.6

), 

and 𝜓(𝜍) = [1 5]𝑇 and 𝑔(𝜍, 𝜌(𝜍)) = [
tan  −1𝜌(𝜍)

(𝜋2𝜍)2
 
sin𝜌(𝜍)

𝜋6𝜍
]
𝑇

. Let’s investigate 

the assumptions for system (17) one by one,  

𝔐𝜏,𝛼,𝜗[0, 𝜍] =  𝔐0.5,0.5,𝑡+1[0,3] = (
68.896 63.956
63.956 59.944

) 
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and  

= √‖𝔐0.5,0.5,𝑡+1[0,3]‖𝑅 = ‖𝔐𝜗,𝐶‖𝐵(ℝ𝑛,𝐿2,(𝐽,ℝ𝑛)/𝑘𝑒𝑟𝔐𝜗,𝑐)

−1
= 6.2874 

which guarantees that the inverse operator 𝔐𝜗,𝑐
−1  exist, so the operator 𝔐𝜗,𝐶 

holds (𝑂1). 𝑔 ∶ [0,3] × ℝ2  → ℝ2 is continuous. For any 𝜌,𝜔 ∈ ℝ𝑛 

‖[
tan  −1 𝜌(𝜍)

(𝜋2𝜍)2
 
sin 𝜌(𝜍)

𝜋6𝜍
]

𝑇

−
tan  −1 𝜔(𝜍)

10(𝜋2𝜍)2
 
sin 𝜔(𝜍)

20(𝜋𝜍)6
‖ ≤ 𝐿𝑔(𝜍)‖𝜌(𝜍) − 𝜔(𝜍)‖, 𝜍 ∈ [0,3] 

where 𝐿𝑔(𝜍) =
1

10𝜋4𝜍
∈ 𝐿∞(𝐽, ℝ+). So (𝑂2) is satisfied for equation (17). 

𝑅2 (1 + 𝜗0
3𝜒0.5,0.5,𝑡+1

‖𝐴‖,‖𝐵‖,‖𝐹‖(3,0)‖𝑆‖𝑅) = 0.6320 < 1 

Thus, the inequality (11) also is satisfied. As a result, Theroem 4 gives that 

equation (17) is relatively controllable via the control 𝜐𝜌(𝜍) which can be 

obtained from (12). 

Remark 2 We would like to state that under the permutable matrices 

by choosing 𝑑 = 𝛼 = 𝛽 = 1 and 𝜗(𝜍) = 𝜍, the obtained results overlaps with 

those of (You et al., 2021). 

 

4. CONCLUSION 
 

We identify a notion of the 𝜗-Gramian matrix so as to demonstrate 

that the linear multi-delayed neutral equation consisting of the Caputo 

derivative w.r.t another function is relatively controllable, and offer the both 

necessary and sufficient circumstances for the linear system. We acquire the 

controllability outcomes for the semi-linear multi-delayed neutral equation 

having commutative coefficients consisting of the Caputo derivative w.r.t 

another function by means of the fixed point theorem of the Krasnoselskii. 

Moreover,  this paper in terms of relative controllability of fractional 

or ordinary differential system and the offered findings contains many distinct 

sorts of  extensive papers(Pospısil, 2017; Pospisil  & Skripkova, 2015; 

Sontag, 2013; You et al., 2020), etc and more undone studies which include 

all obtained results above  since for some special choices of 𝜗, one can 

acquire the traditional Caputo FD(Samko et al., 1993), the well-known 

Hadamard FD(Kilbas et al., 2006) the Caputo–Erdélyi–Kober FD given in 

(Luchko  & Trujillo, 2007) and the Caputo–Hadamard FD given in (Gambo et 

al., 2014; Jarad et al., 2012). 
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The next possible study could be devoted to working Lyapunov, 

finite-time, exponential stabilities of the 𝜗-Caputo fractional differential 

multi-delayed neutral system with non-permutable coefficients. Another 

direction for additional studies is to investigate approximate controllability, 

Ulam-Hyers stability, and asymptotic stability results for 𝜗-fractional 

functional evolution equations. 
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INTRODUCTION 

Various phenomena in natural science are usually modeled by the 

BVPs for ODEs and PDEs. In most cases finding an analytical solutions to 

such problems is very difficult. Alternatively, numerical or semi-analytical 

methods may provide approximate solutions rather than analytical ones. The 

DTM is semi- analytical method is semi-analytical method for of linear and 

nonlinear BVPs for various type of differential equations. As opposed to the 

Taylor expansion the DT method provides approximate or exact solutions to 

BVPs without the need to calculate higher derivatives of data functions.  

The classical DTM was first developed by Zhou in the study of 

problems appearing in electrical circuit analysis (Zhou, 1986). This method 

was later developed in different directions by many scientists (see, (Chiou and 

Tzeng,1996), (Chen and Ho, 1999), (Ayaz, 2004)). Ertürk and Momani used 

the DTM and ADM to get an approximate solutions for fourth -order BVPs. 

This work also provides a numerical comparison of DTM and ADM-solutions 

(Ertürk and Momani, 2007). Wazwaz has developed a new generalization of 

decomposition method for obtaining an approximate solution to a special type 

high-order BVP’s (Wazwaz, 2002). In some works, the classical DTM was 

modified so that it can be applied to study not only single-interval BVPs, but 

also many-interval boundary-value-transmission problems (see, for example 

(Arslan, 2022), (Mukhtarov, Yücel and Aydemir, 2021), (Mukhtarov, 

Çavuşoğlu and Olğar, 2019)). In this work we shall propose a new technique, 

the so-called parameterized DTM (P DTM), which is an modification and 

generalization of classic DTM, since for the concrete values of the parameter 

the PDTM reduces to the classic DTM. 

1. THE PARAMETERIZED DTM  
 

In below we have defined a new modification of the classical 

differential transformation technique which you can find approximate, and in 

some cases even exact solutions not only regular initial and/or boundary value 

problems, as well as similar problems involving an internal singularity. 

Suppose that 𝑓: 𝑅 → 𝑅, is an analytic function, that is 𝑓(𝑥) can be expanded 

in a Taylor series. Denote  

𝑌𝑠(𝑓, 𝑥0): =
1

𝑠!
𝑓(𝑠)(𝑥0), 𝑠 = 0,1,2 … 

Definition 1. Let 𝛼 ∈ [0,1] be any real number. The sequence 

𝐷𝛼(𝑓) ≔ (𝐷(𝑓, 𝛼; 𝑛)) 
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is called 𝛼 −parameterized DTM the original function 𝑓(𝑥) at the two points 

𝑥 = 𝑎 and 𝑥 = 𝑏, where  

−∞ < 𝑎 < 𝑏 < ∞, and 𝐷(𝑓, 𝛼; 𝑠) is defined by 

𝐷(𝑓, 𝛼; 𝑠) ≔ 𝛼𝑌𝑠(𝑓, 𝑎) + (1 − 𝛼)𝑌𝑠(𝑓, 𝑏).

Definition 2. Given 𝐶̃ = (𝑐0, 𝑐1, 𝑐2, … ). Suppose the series

Zα(𝐶, x): = ∑ 𝐶𝑠(x − (αa + (1 − α)b)𝑘

∞

s=1

is convergens in R. Then the function  Zα(𝐷𝛼(𝑓), x) is called parametrized

DTM.  

Remark 1. The equality 𝑍𝛼(𝐷𝛼(𝑓), 𝑥) = 𝑓(𝑥) is not satisfied for all

analytical functions. However, the following Theorem is true. 

Theorem 1. If 𝛼 = 0 or 𝛼 = 1, then 𝑍𝛼 = 𝐷𝛼
−1, that is the equalities

𝑍0(𝐷0(𝑓), 𝑥) = 𝑓(𝑥) and 𝑍1(𝐷1(𝑓), 𝑥) = 𝑓(𝑥) are satisfied for all analytic

functions 𝑓(𝑥). 

Corollary 1. Let 𝛼 = 0 or 𝛼 = 1. Then the proposed parameterized DTM 

reduces to the well-know differential transformation at the points 𝑥 =

𝑏 and 𝑥 = 𝑎 respectively. Likewise, in these cases 𝛼 − P DTM reduce to the 

classical inverse DTM. 

Definition 3. The finite sum 

𝑠𝛼,𝑛(𝑡) ≔ ∑ (𝑠𝛼(𝑐, 𝑑))𝑛(𝑠)(𝑡 − (𝛼𝑐 + (1 − 𝛼)𝑑))
𝑛

,𝑁
𝑛=0

That is the N-th partial sum of the inverse differential transformation is said to 

be an N-th parameterized approximation of the original function. 

Theorem 2. If 𝑓(𝑥) = 𝑐𝑜𝑛𝑠𝑡, then the equalities  

𝑍𝛼(𝐷𝛼(𝑓), 𝑥) = 𝑓(𝑥)  𝑎𝑛𝑑 𝑍𝛼(𝐷𝛼,𝑛(𝑓), 𝑥) = 𝑓(𝑥),   𝑛 = 0,1, …

are hold. 

Theorem 3. Let 𝛽 ∈ 𝑅 be any real number. Then  

a) 𝐷𝛼(𝛽𝑓) = 𝛽𝐷𝛼(𝑓)

b) 𝑍𝛼(𝐷𝛼(𝛽𝑓), 𝑥) = 𝛽𝑍𝛼(𝐷𝛼(𝑓), 𝑥)

c) 𝑍𝛼(𝐷𝛼,𝑛(𝛽𝑓), 𝑥) = 𝛽𝑍𝛼(𝐷𝛼,𝑛(𝑓), 𝑥),    𝑛 = 0,1,2, …
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Theorem 4.  

      a)   𝐷𝛼(𝑓 ± 𝑔) = 𝐷𝛼(𝑓) ± 𝐷𝛼(𝑔) 

      b)   𝑍𝛼(𝐷𝛼(𝑓 ± 𝑔), 𝑥) = 𝑍𝛼(𝐷𝛼(𝑓), 𝑥) ± 𝑍𝛼(𝐷𝛼(𝑔), 𝑥) 

      c)    𝑍𝛼(𝐷𝛼,𝑛(𝑓 ± 𝑔), 𝑥) = 𝑍𝛼(𝐷𝛼,𝑛(𝑓), 𝑥) ± 𝑍𝛼(𝐷𝛼,𝑛(𝑔), 𝑥),      

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 = 0,1,2, … 

Theorem 5. Let 𝑔(𝑥) =
𝑑𝑚𝑓(𝑥)

𝑑𝑥𝑚 ,   𝑛 ∈ 𝑁.  Then  

a) 𝐷(𝑔, 𝛼; 𝑠) =
(𝑠+𝑚)!

𝑠!
𝐷(𝑓, 𝛼; 𝑠 + 𝑚) 

b) 
𝑑𝑚

𝑑𝑥𝑚 𝑓𝛼,𝑛(𝑥) = ∑
(𝑠+𝑚)!

𝑘!
𝐷(𝑓, 𝛼; 𝑠 + 𝑚)(𝑥 − 𝑥𝛼)𝑠,𝑛

𝑠=0  

    𝑤ℎ𝑒𝑟𝑒 𝑥𝛼 = 𝛼𝑎 + (1 − 𝛼)𝑏. 

 

Theorem 6. If  𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥) 𝑡ℎ𝑒𝑛  

 𝐷(𝑓, 𝛼; 𝑠) = ∑ [𝛼𝑌𝑚(𝑔; 𝑎)𝑌𝑠−𝑚(ℎ; 𝑎) + (1 − 𝛼)𝑌𝑚(𝑔; 𝑏)𝑌𝑠−𝑚(ℎ; 𝑏)]𝑠
𝑚=0 . 

 

 

Theorem 7.  Let 𝑓(𝑥) = 𝑥𝑚, 𝑚 ∈ 𝑁.   Then 

𝐷(𝑓, 𝛼; 𝑠) = {
(

𝑚

𝑠
) (𝛼𝑎𝑚−𝑠 + (1 − 𝛼)𝑏𝑚−𝑠)     𝑓𝑜𝑟 𝑠 < 𝑚

1                                                       𝑓𝑜𝑟  𝑠 = 𝑚
0                                                       𝑓𝑜𝑟  𝑠 > 𝑚

 

 

2. NUMERICAL RESULTS 

2.1 Example 

Consider the following HOBVP  

𝑦(4)(𝑡) = 4𝑒𝑡 + 𝑦(𝑡), 0 < 𝑡 < 1 (2.1.1) 

subject to the BCs  

𝑦|0 = 1,
𝑑2𝑦

𝑑𝑡2
|

0

= 3, 𝑦|1 = 2𝑒,
𝑑2𝑦

𝑑𝑡2
|
1

= 4𝑒 (2.1.2) 

This problem has an exact solution, given by 𝑦(𝑡) = (1 + 𝑡)𝑒𝑡.  
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Figure 1: The graph of the function  𝑦(𝑡) = (1 + 𝑡)𝑒𝑡 .

If it is applied 𝑃𝐷𝑇 to both sides of (2.1.1), then we obtain 

(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)(𝑆𝛼(0,1))
𝑛+4

(𝑦)

= ((𝑆𝛼(0,1))
𝑛

(𝑦) +
4

𝑛!
) 

(2.1.3) 

Therefore, from the definition of PDT, 

yα(t) = ∑(Sα(0,1))
n

(y)(t − tα)n

∞

n=0

and 

𝑦𝛼
′′(𝑡) = ∑(𝑆𝛼(0,1))

𝑛
(𝑦)𝑛(𝑛 − 1)(𝑡 − 𝑡𝛼)𝑛−2

∞

𝑛=0

Moreover, for the BCs 𝑦|0 = 1,
𝑑2𝑦

𝑑𝑡2|
0

= 3,  𝑦|1 = 2𝑒,
𝑑2𝑦

𝑑𝑡2|
1

= 4𝑒 

𝑦𝛼(0) = ∑(𝑆𝛼(0,1))
𝑛

(𝑦)(𝛼 − 1)𝑛 = 1

𝑁

𝑛=0

𝑦𝛼
′′(0) = ∑(𝑆𝛼(0,1))

𝑛
(𝑦)𝑛(𝑛 − 1)(𝛼 − 1)𝑛−2 = 3

𝑁

𝑛=0

𝑦𝛼(1) = ∑(𝑆𝛼(0,1))
𝑛

(𝑦)(𝛼)𝑛 = 2𝑒

𝑁

𝑛=0

𝑦𝛼
′′(1) = ∑(𝑆𝛼(0,1))

𝑛
(𝑦)𝑛(𝑛 − 1)(𝛼)𝑛−2 = 4𝑒

𝑁

𝑛=0
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respectively. Here, let (𝑆𝛼(0,1))
0

(𝑦) = 𝜌, (𝑆𝛼(0,1))
1

(𝑦) = 𝜎, 

(𝑆𝛼(0,1))
2

(𝑦) = 𝜏, and (𝑆𝛼(0,1))
3

(𝑦) = 𝜔, then substituting in the recursive 

relation (5), we can calculate the other terms of the 𝑃𝐷𝑇 as 

(𝑆𝛼(0,1))
4

(𝑦) =
1

3!
+

𝜌

4!
,    (𝑆𝛼(0,1))

5
(𝑦) =

4

5!
+

𝜎

5!
,  

(𝑆𝛼(0,1))
6

(𝑦) =
4

6!
+

𝜏

6!
,      (𝑆𝛼(0,1))

7
(𝑦) =

4

7!
+

6𝜔

7!
, 

 (𝑆𝛼(0,1))
8

(𝑦) =
8

8!
+

𝜌

8!
, (𝑆𝛼(0,1))

9
(𝑦) =

8

9!
+

𝜎

9!
, 

(𝑆𝛼(0,1))
10

(𝑦) =
8

10!
+

2𝜏

10!
, (𝑆𝛼(0,1))

11
(𝑦) =

8

11!
+

6𝜔

11!
, 

 (𝑆𝛼(0,1))
12

(𝑦) =
12

12!
+

𝜌

12!
, (𝑆𝛼(0,1))

13
(𝑦) =

12

13!
+

𝜎

13!
, 

 (𝑆𝛼(0,1))
14

(𝑦) =
12

14!
+

2𝜏

14!
 ,  (𝑆𝛼(0,1))

15
(𝑦) =

12

15!
+

6𝜔

15!
, … 

Hence, the parameterized series solution 𝑦𝛼(𝑡) is evaluated up to 𝑁 = 15: 
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𝑦𝛼(𝑡) = ∑(𝑆𝛼(0,1))
𝑛

(𝑦)(𝑡 − 𝑡𝛼)𝑛

15

𝑛=0

 =  𝜌 + 𝜎(𝑡 − 1 + 𝛼) + 𝜏(𝑡 − 1 + 𝛼)2 + 𝜔(𝑡 − 1 + 𝛼)3 

+ (
1

3!
+

𝜌

4!
) (𝑡 − 1 + 𝛼)4 + (

4

5!
+

𝜎

5!
) (𝑡 − 1 + 𝛼)5 

+ (
4

6!
+

𝜏

6!
) (𝑡 − 1 + 𝛼)6 + (

4

7!
+

6𝜔

7!
) (𝑡 − 1 + 𝛼)7 

+ (
8

8!
+

𝜌

8!
) (𝑡 − 1 + 𝛼)8 + (

8

9!
+

𝜎

9!
) (𝑡 − 1 + 𝛼)9 

+ (
8

10!
+

2𝜏

10!
) (𝑡 − 1 + 𝛼)10 + (

8

11!
+

6𝜔

11!
) (𝑡 − 1 + 𝛼)11 

+ (
12

12!
+

𝜌

12!
) (𝑡 − 1 + 𝛼)12 + (

12

13!
+

𝜎

13!
) (𝑡 − 1 + 𝛼)13 

+ (
12

14!
+

2𝜏

14!
) (𝑡 − 1 + 𝛼)14 + (

12

15!
+

6𝜔

15!
) (𝑡 − 1 + 𝛼)15 

Figure 2. The PDTM-solution of (2.1.1)-(2.1.2) for 𝛼 = 0,5. 
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Figure 3. The  PDTM-solution of (2.1.1)-(2.1.2)  for  𝛼 = 0,2 

 

 
 
 

 
Figure 4. The PDTM-solution of (2.1.1)-(2.1.2)  for  𝛼 = 0,999.   
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Figure 5. The ADM solution of (2.1.1)-(2.1.2) 

Figure 6. The DTM solution of  (2.1.1)-(2.1.2) 
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Figure 7. The analytic solution (red line) is compared with the 

DTM-solution (blue line) for the problem (2.1.1)-(2.1.2) 

Figure 8. The analytic solution (red line) is compared with the 

PDTM-solution (orange line)  
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Figure 9. Graphs of the analytical solution (red line), ADM-solution 

(green line) and PDTM-solution (blue line).  

Figure 10. Graphs of the analytical solution (red line) DTM-solution 

(orange line) and PDTM-solution (blue line)  
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2.2 Example 

 

Given 

𝑦′′(𝑥) + 2𝑦′(𝑥) + 𝑦(𝑥) = 𝑒−𝑥, 𝑥 ∈ [−1,0] (2.2.1) 
with the nonhomogeneous boundary condition  

𝑦|−1 = 1 and 𝑦|0 = 0 (2.2.2) 

  

We can write that the analytic solution of this problem is  

𝑦(𝑥) =
1

2
𝑒−1−𝑥𝑥(−2 + 𝑒 + 𝑒𝑥) (2.2.3) 

 
Figure 11. Graph of the exact solution of the problem (2.2.1)-(2.2.3) 

By applying PDTM we have  

(𝑠 + 1)(𝑠 + 2)𝐷(𝑦, 𝛼; 𝑠 + 2)

= −2(𝑠 + 1)𝐷(𝑦, 𝛼; 𝑠 + 1) − 𝐷(𝑦, 𝛼; 𝑠) +
(−1)𝑠

𝑠!
 

(2.2.4) 

Consequently,  

𝑦𝛼(𝑥) = ∑ 𝐷(𝑦, 𝛼; 𝑠)(𝑥 − 𝑥𝛼)𝑠

∞

𝑠=0

 

Using 𝑦|−1 = 1  and 𝑦|0 = 0, we get 

𝑦𝛼(−1) = ∑ 𝐷(𝑦, 𝛼; 𝑠)(𝛼 − 1)𝑠

𝑃

𝑠=0

= 1 (2.2.5) 

and 

𝑦𝛼(0) = ∑ 𝐷(𝑦, 𝛼; 𝑠)(𝛼)𝑠

𝑃

𝑠=0

= 0 (2.2.6) 

Let 𝐷0 = 𝐷(𝑦, 𝛼; 0) and 𝐷1 = 𝐷(𝑦, 𝛼; 1). Then we have 
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D(y, α; 3) =
1

3!
[3𝐷1 + 2𝐷0 − 3],

D(y, α; 4) =
 1

12
[−2𝐷1 −

3

2
𝐷0 + 3],

D(y, α; 5) =
 1

20
[

5

6
𝐷1 +

2

3
𝐷0 −

10

6
], 

D(y, α; 6) =
1

30
[−

3

12
𝐷1 −

5

24
𝐷0 +

15

24
], 

⋮ 

Taking 𝑃 = 6, yields 

𝑦(𝑥, 𝛼) = ∑ 𝐷(𝑦, 𝛼; 𝑘)(𝑥 − 𝑥𝛼)𝑘

6

𝑘=0

(2.2.7) 

= 𝐷0 + (𝑥 + 𝛼)𝐷1 + (𝑥 + 𝛼)2
1

2
[−2𝐷1 − 𝐷0 + 1]

+ (𝑥 + 𝛼)3
1

3!
[3𝐷1 + 2𝐷0 − 3]

+(𝑥 + 𝛼)4
 1

12
[−2𝐷1 −

3

2
𝐷0 + 3]

+ (𝑥 + 𝛼)5
 1

20
[
5

6
𝐷1 +

2

3
𝐷0 −

10

6
] 

+(𝑥 + 𝛼)6
1

30
[−

3

12
𝐷1 −

5

24
𝐷0 +

15

24
] 

where 𝑥𝛼 = −𝛼 and  𝐷(𝑦, 𝛼; 0) = 𝐷0, 𝐷(𝑦, 𝛼; 1) = 𝐷1. Thus, from (2.2.7),

𝑦(−1, 𝛼) = 𝐷0 + 𝐷1(−1 + 𝛼) +
1

2
(1 − 𝐷0 − 2𝐷1)(−1 + 𝛼)2 +

1

6
(−3

+ 2𝐷0 + 3𝐷1)(−1 + 𝛼)3 +
1

12
(3 −

3𝐷0

2
− 2𝐷1)(−1 + 𝛼)4

+
1

20
(−

5

3
+

2𝐷0

3
+

5𝐷1

6
)(−1 + 𝛼)5 +

1

30
(
5

8
+

5𝐷0

24

−
𝐷1

4
)(−1 + 𝛼)6 = 1

and 

𝑦(0, 𝛼) = 𝐷0 + 𝐷1𝛼 +
1

2
(1 − 𝐷0 − 2𝐷1)𝛼2 +

1

6
(−3 + 2𝐷0 + 3𝐷1)𝛼3

+
1

12
(3 −

3𝐷0

2
− 2𝐷1)𝛼4 +

1

20
(−

5

3
+

2𝐷0

3
+

5𝐷1

6
)𝛼5

+
1

30
(
5

8
+

5𝐷0

24
−

𝐷1

4
)𝛼6 = 0

Using (2.2.2) we get 
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𝐷0 = −(15(−2040𝛼 + 17496𝛼2 − 27612𝛼3 + 23404𝛼4 − 13029𝛼5

+ 4977𝛼6 − 1274𝛼7 + 210𝛼8 − 21𝛼9 + 𝛼10))/(−234720

+ 467400𝛼 − 457320𝛼2 + 278940𝛼3 − 99200𝛼4

− 649𝛼5 + 23905𝛼6 − 13250𝛼7 + 3790𝛼8 − 625𝛼9

+ 49𝛼10 

and 

𝐷1 = (5(−6120 + 69840𝛼 − 77088𝛼2 + 33108𝛼3 + 3231𝛼4 − 14236𝛼5

+ 11276𝛼6 − 5068𝛼7 + 1471𝛼8 − 260𝛼9

+ 22𝛼10))/(−234720 + 467400𝛼 − 457320𝛼2

+ 278940𝛼3 − 99200𝛼4 − 649𝛼5 + 23905𝛼6 − 13250𝛼7

+ 3790𝛼8 − 625𝛼9 + 49𝛼10) 

 
Figure 12. The PDTM- solution for 𝛼 = 0,25.  
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Figure 13. The PDTM- solution for 𝛼 = 0,05.   

 
Figure 14. The analytic solution (red line) and the PDTM-solution (blue line) for  

𝛼 = 0,05. 
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Figure 15. The analytic solution (red dashing) and the DTM-solution (blue dotted). 
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INTRODUCTION 

The main purpose of this chapter is to express and use linearization 
methods to find the solutions of nonlinear equations of different orders and 
fractional order that cannot be solved using the usual methods or their 
solutions can be obtained with difficulty. Some examples of the methods that 
have been researched in this study are: Backlund transformation method of 
Riccati equation, Kudryashov method and three wave method (See for 
example (Liu, 2019), (Kumar, 2018),  (Ma, 2019),  (Zhao, 2020),( Liano, 
1992) ,(Wazwaz, 2007),( He, 2006),( Kudryashov, 2016),( Manafian, 2017),( 
Biswas, 2020),( Sajid, 2020) and ( Ghanbari, 2021)). All methods are 
described in detail and their application is presented with examples. Recently, 
a new modification of Riemann-Liouville derivative is proposed by Jumarie: 

( ) ( ) ( ) ( ) ( )( )
0

1 0 , 0 1
1

x
a
x

dD f x x f f d
dx

aε ε ε a
a

−= − − < <
Γ − ∫  

and gave some basic fractional calculus formulae, for example: 
 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ,x x xD u x v x v x D u x u x D v xααα  = +                           

(a) 

( )( )( ) ( ) ( )( ) ( )( ) ,x u x x xD f u x f u D u x D f u u
α

ααα   ′′= =                           (b) 

 
The last formula (b) has been applied to solve the exact solutions to 

some nonlinear fractional order differential equations. If this formula were 

true, then we could take the transformation 
( )1
ktx

α

x
α

= −
Γ +

 and reduce the 

partial derivative 
( ),U x t
t

α

α

∂
∂

to ( )U ξ′ . Therefore the corresponding 

fractional differential equations become the ordinary differential equations 
which are easy to study. But we must point out that Jumarie’s basic formulae 
(a) and (b) are not correct, and therefore the corresponding results on 
differential equations are not true.  

(i) Riemann-Liouville definition: If n is a positive integer and  

[ )1,n nα ∈ −  the thα derivative of f  is given by 
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( ) ( )
( )

( ) 1
1 tn

a nn
a

f xdD f t dx
n dt t x

a
aa − +=

Γ − −∫  

(ii) Caputo Definition. For [ )1,n nα ∈ −  the α  derivative of f is  

( ) ( )
( )

( ) 1
1 .

nt

a n
a

f x
D f t dx

n t x
a

aa − +=
Γ − −∫  

Now, all definitions are attempted to satisfy the usual properties of the 
standard derivative. The only property inherited by all definitions of fractional 
derivative is the linearity property.  

 

Definition 1. Let ( )f tα  stands for ( )( )T f tα . Hence 

 

( ) ( ) ( )1

0
lim

f t t f t
f t

α
α

ξ

ξ

ξ

−

→

+ −
=  

 
If f is α -differentiable in some ( )0,a , 0a > , and ( )

0
lim
t

f tα
+→

exists, then by definition 
( ) ( )

0
0 lim

t
f f tαα

+→
=  

We should remark that ( )T t tµ µ α
α µ −= . Further, this definition 

coincides with the classical definitions of R-L and of Caputo on polynomials 
(up to a constant multiple). 

One can easily show that Tα satisfies all the properties in the theorem. 

Theorem 2. Let )0,1α ∈  and ,f g  beα -differentiable at a  point 

t , Then: 
 

( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
2

, , .

,

i T af bg aT f bT g for all a b

ii T t t for all

iii T fg fT g gT f

fT g gT ffi T
g g

a a a

µ µ a
a

a a a

a a
a

µ µ

ν

−

+ = + ∈

= ∈

= +

− 
= 

 

�

�

 

 



65 | Recent Advances in Mathematics  
 

If, in addition, f  is differentiable, then ( )( ) 1 dfT f t t
dt

α
α

−= . 

However, it is worth noting the following fractional derivatives of 
certain functions: 

( )

( )

( )

1 1

.

1 1sin cos ,.

1 1cos sin ,.

t t
i T e e

ii T t t

iii T t t

α

αα
α

α

α

αα

αα

 
= 

 
  = 
 
  = − 
 

 

 
Definition 3. (Fractional Integral) Let 0a ≥ and t a≥ . Also, let f be a 

function defined on ]( ,a t  and fα ∈ .  Then the α −fractional integral of  f  

is defined by, 

( )( ) ( )
1

t

a

f x
I f t dx

x
a
a a−= ∫  

1- alghoritm of the Backlund transformation method of Riccati 
equation for NLSE 

 
At first we consider the following Riccati equation: 

2( ) ( ,)ϕ ξ σ ϕ ξ′ = +                                                          (1) 
which has the following exact solutions 

( )
( )

( )
( )

 , 0,

cot  , 0,

1 , . 0.

 , 0,

cot  , 0,

tanh

h

const

tan

ϕ

ssξs  

ssξs  

ω s
ξ ω

ssξs  

ssξs  





= 






− − − <

− −

=



− <

− =
+

− >

− − >

                                              (2) 

Next, let us consider the nonlinear evolution equation (NLEE): 
 

( ), , , , , , ,.... 0, 0 , , 1.t x y t t t x x xG u D u D u D u D D u D D u D D uα β y ααα   β β β α β y= < <  (3)                                
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Where u  is an unknown function, and G is a polynomial of u . In 
this equation, the partial fractional derivatives involving the highest order 
derivatives and the nonlinear terms are included. Next by using the new 
definition for traveling wave variable 

( ) ( ), e ,
x ti k c x tu x t U l
β α

β α
β αx x ω

β α

 
+  

 = = +        (4) 

Where , ,k c l  and ω  are non-zero arbitrary constants, we can rewrite 
Eq. (3) as the following nonlinear ODE: 

, , ,  ..(  0.).  P U U U′ ′′ =                                                          (5) 
 

Step 1: Suppose that Eq. (5) has the following solution (the main idea 
of this study) 
 

( ) ( )
0 1

( ) ( ) ( ) 
N N

i i
i i

i i
U A m B mξψξψξ     −

= =

= + + +∑ ∑                                (6) 

 
Where ,i iA B  are constants to be determined and ( )ψξ   comes from 

the following Backlund transformation for the Riccati equation: 

  
 

( )( )
( )

B D
D B
σ ϕ ξψξ

ϕ ξ
− +

=
+

                                                         (7) 

And ( )ψξ   satisfies in the Riccati equation 

2( ) ( ,)ψξ  σ ψξ ′ = +                                                          (8) 

           Where ,B D  are arbitrary parameters, σ  is a constant to be 
determined and ( )0,B ϕ ξ≠  are the well-known solutions (2). For simplicity 
we assume   
 

( )F m ψξ = +                                                                 (9) 

So  

0 1
( ) 

N N
i i

i i
i i

U A F B Fξ −

= =

= +∑ ∑                                                (10) 

and 
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2 2)  ( ) ( ( ) ( )Fψξ  σ ψξψξ    σ ψξ ′′ = + ⇒ = ′ = +  
 

Step 2 : Balancing the highest order derivatives and nonlinear term in (5) to 
determine the positive integer N  in (6). 
Step 3 : Substituting the explicit formal solution (6) with (7) into Eq. (5) and 
setting the coefficients of the powers of φ(ξ) to be zero, we obtain a system of 
algebraic equations which can be solved by the Maple or Mathematica to get 
the unknown constants , , ,i iA B kσ  and  c  . Consequently, we obtain the 
exact solutions of Eq. (3). Now we consider the NLSE with group velocity 
dispersion coefficient and second order spatiotemporal dispersion coefficient 
as follows  
 

2 2
2

1 2 32 2 0q q q qi q q
x t t x

αα

αα γ γ γ
 ∂ ∂ ∂ ∂

+ + + + = ∂ ∂ ∂ ∂ 
                                    (11) 

             In order to extract optical solitons, one may have the following 
starting hypothesis, the wave profile is split into amplitude and phase 
components, respectively, as 

( ) ( ), iq x t U e ψx=                                                   (12) 

Where 2
x tv

αα

x γ
αα

 
= − 

 
. The ( )U ξ   is the amplitude components of the 

wave profiles, while the phase factor is given by 

,x tk
αα

ψ ω υ
αα

= − + +                                                 (13) 

where _ is the frequency of the solitons while ω  represents the wave number 
and υ is the phase constant. The following section explains the integration 
scheme. Substituting (2.2) into (1.1), and then decomposing into real and 
imaginary parts leads to a pair of relations. The imaginary part leads to a 
constraint relation between the soliton parameters as 

2

1

1 2B γ κ
γ υ
−

=                                                                          (14) 
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which is a constraint condition for the solitons to exist. The real part equation 
is given as 

( ) ( ) ( )
2 2

3 3 2 2 2
2 2

1 2
0U U U U

βκ βν γ
βω κ αω γκ

α υ

− +
′′ + − + + + =   (15) 

By applying the homogeneous balance in (15), we have n = 1. 
Suppose (15) have the solution of the form 

1
0 1 1( ) U A A F B Fξ −= + +    (16) 

Now substituting Eq. (16) along with Eqs. (12-13) into Eq. (15), we 
get a polynomial in ( )F ξ . Equating the coefficient of same power of

( )( )0, 1, 2,...iF iξ = ± ± , we attain the system of algebraic equations, and by

solving these obtained system of equations for 0 1 1, , ,A A B m andσ , and by 
solving obtained system we get the following values: 

Family 1: 

( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( )

2 2
32

0 1 2 2

2 2
32 2

2 2

1 2 2
3

2 2
3 2 4 2

2 2

2 1 21 , ,
3

2 1 2
1

18 1 2

6 1 2
3 .

A A

B

βκ βν γ
βω

α υ

βκ βν γ
α υ

α υ
βκ βν γ

βκ βν γ
σ β ω κ αω γκ

α υ

− − +
= =

− − +

= ×
− +

 − +
 − + + +
 
 

Now by using Eqs. (15)- (17), and substituting the general solutions 
of Eq. (7) into Eq. (13), we have three types of travelling wave solutions of 
the time and space fractional derivatives cubic nonlinear Schrodinger as 
follows: 
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Solutions for family 1: 

When 0σ <   , 

( ) ( )

( )
( )

( ) ( )

( ) ( )
( ) ( ) ( )

( )
( )

2 2
32

2 2

2 2
32 2

2 2

2 2
3

2 2
4 2

1

3 2
2 2

2 1 21( )
3

2 1 2
1

18 1

,

 2

6 1 2

 

 

3

 

 

U

B D tanh
m

D B tanh

B D tanh
m

D B tanh

βκ βn γ
βω

a υ

βκ βn γ
a υ

a υ
βκ βn γ

βκ βn γ
σ β ω κ aω γκ

a

σ

υ

ξ

σ σ σ ξ

σ σ ξ

σ σ ξ

σ σ ξ

−

+
− − +

×

− − +

×
−

=

 − − − −
 + +
 − −



+

 − +

− 

 − − − −
 +
 − − −

 − + +
 







+ ×


 
So 
 

( )
( ) ( )

( )

( ) ( )

( ) ( )

2 2
32

1 1 2 2

2

2

2 2
32 2

2 2

2 2
3

2 1 21,
3

2 1 2
1

18 1 2

6 1

 

 

x ti k

x ti k
B D tanh

m
D B tanh

q x t e

x tv
e

x tv

a a

a a

ω υ
a a

a a

ω υ
a a

a a

σ

βk βn γ
βω

a υ

γ
a a

γ
a a

βk βn γ
a υ

a υ
βk βn

σ

σ x

γ

σ

σ

 
− + +  
 

−

 
− + +  
 

+

 

− − +
= ×

 
− 

 
 

− 
 

− − +




− − − −  

  + × 
 − − −


− +
+ ×

 

( ) ( ) ( )
2 2

3 2 4 2
2 2

2

2

1

 
,

3

 

2

x ti k
B D tanh x tv

e
x tv

m
D B tanh

a a

a a

ω υ
a a

a a

βk βn γ
σ β ω k aω

σ

γk
a υ

γ
a a

γ

σ

σ σ
a

σ

a

 
− +

−

+  
 

  

−

− − − −  
  +   − − −

 +
 − + + + ×
 
 

 
− 

 
 

−     


 
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And  
 

( )
( ) ( )

( )

( ) ( )

( ) ( )

2 2
32

1 2 2 2

2

2

2 2
32 2

2 2

2 2
3

1

coth  

cot

2 1 21,
3

2 1
1

h  

2

18 1 2

6

x ti k

x ti k

D

q x t e

x tv
e

x tv

B D
m

B

αα

αα

ω υ
αα

αα

ω υ
αα

αα

βk βν γ
βω

α υ

γ
αα

γ
αα

βk βν γ
α υ

α υ
βk

σ

β

σ σ

x

γ

σ σ

ν

 
− + +  
 

−

 
− + +  
 

+

  
− − − −  

  +

− − +
= ×

 
− 

 
 

− 
 

− − +

×
−

× 
 − −


+

−
 



+

( ) ( ) ( )
2 2

3 2 4 2
2 2

2

2

1

coth  
,

2

coth

3

 

x ti k
B D

m
D

x tv
e

tvB x

αα

αα

ω υ
αα

αα

σ σ σ

βk βν γ
σ β ω kα ω γk

α υ

γ
αα

σ σ γ
αα

 
− + + 
 

−



  

−

− − − −  
  +   − − −

 +
 − + + + ×
 
 

 
− 

 
 

−     


 

 

 
2-  Kudryashov method 

       In this section we apply the Kudryashov method for solving fractional 
coupled nonlinear Schrodinger equations 
 

( )
( )

2
2 21 1

1 2 12

2
2 22 2

1 2 22

1 0,
2 ,0 1,
1 0,
2

i e
t x x

i e
t x

α

α

α

α

ψψ
ψψψ 

α
ψψ

ψψψ 

 ∂ ∂
+ + + = ∂ ∂ −∞ < < ∞ < ≤

∂ ∂ + + + = ∂ ∂

  (17) 

where 1ψ  and 2ψ are the wave amplitudes in two polarizations and e is the 
cross-phase modulation coefficient.  The nonlinear Schrodinger equation is an 
example of a universal nonlinear model that describes many physical 
nonlinear systems. The equation can be applied to hydrodynamics, nonlinear 
optics, nonlinear acoustics, quantum condensates, heat pulses in solids and 
various other nonlinear instability phenomena. Such equations have been 
shown to govern pulse propagation along orthogonal polarization axes in 



71 | Recent Advances in Mathematics  
 

nonlinear optical fibers and in wavelength-division-multiplexed systems. 
These equations also model beam propagation inside crystals or 
photorefractive as well as water wave interactions. Solitary waves in these 
equations are often called vector solitons in the literature as they generally 
contain two components. In all the above physical situations, collision of 
vector solitons is an important issue.  

2-1  Analysis of the Method 

The purpose of this section is to present the algorithm of the 
Kudryashov method to find exact solutions of the nonlinear evolution 
equations. Let us consider the nonlinear partial differential equation in the 
form 

( ), , , , , ,.... 0, 0 , 1.t x t t t x x xG u D u D u D D u D D u D D uα β ααα   β β β α β= < <              

(18) 

Where u  is an unknown function, and G is a polynomial of u . In 
this equation, the partial fractional derivatives involving the highest order 
derivatives and the nonlinear terms are included. Next by using the new 
definition for traveling wave variable 

( ) ( ), e , ,
x ti k c x tu x t U l
β α

β α
β αx x ω

β α

 
+  

 = = +            (19) 

where , ,k c l  and ω  are non-zero arbitrary constants, we can rewrite 
Eq. (18) as the following nonlinear ODE: 

( ), , , ,... 0,Q U U U U′ ′′ ′′′ =                                                                    (20) 

where the prime denotes the derivation with respect toξ  . If possible, 
we should integrate Eq. (20) term by term one or more times. Now we show 
how one could obtain the exact solution of the Eq. (20) using the approach by 
modified Kudryashov method.  

2-2 Determination of the dominant term 

To find dominant terms we substitute 

,pU ξ=                                                               (21) 
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into all terms of Eq. (20). Then we compare degrees of all terms in Eq. (20) 
and choose two or more with the smallest degree. The minimum value of P  
define the pole of solution for Eq. (20) and we denote it as N. We have to 
point out that method can be applied when N  is integer. If the value N is 
noninteger one can transform the equation not only study the procedure but 
also repeat it. 

2-3 The solution structure

We look for exact solution of Eq. (20) in the form

2
0 1 2( ) ( ) ... ( ),N

NU a aQ a Q a Qξξξ  = + + + +                                       (22) 

where ia  are unknown constants to be determined later, such that 0Na ≠ , 

while ( )Q ξ  have the form 

1( ) .
1

Q
e ξξ =

+
         (23) 

These functions satisfies to the first order ordinary differential 
equations (Riccati equations) 

2( ) ( ) Q( ).Q Qξξξ  ′ = −                                                 (24) 

Eqs. (22) are necessary to calculate the derivatives of functions ( )Q ξ . 

Remark : This Riccati equation also admits the following exact 
solutions: 

0
1 0

0
2 0

ln1( ) 1 tanh , 0,
2 2 2

ln1( ) 1 coth , 0.
2 2 2

Q

Q

ε ξξξξ

ε ξξξξ

  = − − >    
  = − − <    

       (25) 

2-4 Application to the fractional coupled nonlinear Schrodinger
equations 

For our purpose, we introduce the following transformations: 
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( )
( )

1 1

2 2

i

i

y e

y e

η

η

y ξ

y ξ

=

=
          , ,t tx x

αα

x ω η γ
αα

= + = +          (26) 

where ω and γ are constants. By substituting Eqs. (26) into Eqs. (1), is 
reduced into an ODE 

( ) 3 2
1 1 1 1 1 2

1 11 0,
2 2

y i y y y ey yω γ ′′′+ + − + + + = 
 

(27) 

( ) 3 2
2 2 2 2 1 2

1 11 0,
2 2

y i y y y ey yω γ ′′′ + + − + + + = 
 

(28) 

where ' ' d
dξ

′ = . By using the ansatz [20], the pole order of Eqs. (27) and (28) 

are 1 21, 1m m= =   . So we look for solution of Eqs. (14) and (15) in the 
following form 

1 0 1 ,y a aφ= + (29) 

2 0 1 .y b b φ= + (30) 

Substituting Eqs. (29) and (30) into Eqs. (27) and (28), we obtain the system 
of algebraic equations and solving these algebraic equations we have: 

Case1: 

( )

( )

2 3 2 2 2 3
0 0 0 0 0 0

2 3
0

1

2
2 2 2 3

0 0 0 0 0

18 3 3 9 32 6 12 1
2

4

1 3 9 32 6 12 1 9 / 4
2

e a i ie ea e a a a a

e a
a

ie ea e a a a a

  − − − ± − + − +    
 
 =  
  − − ± − + − + −     

, 
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( )

( )

2 3 2 2 2 3
0 0 0 0 0 0

3 3
0

1

2
2 2 2 3

0 0 0 0 0

14 3 3 9 32 6 12 1
2

4

1 3 9 32 6 12 1 9 / 4
2

e a i ie ea e a a a a

e a
b

ie ea e a a a a

  − − ± − + − +    
 
 =  
  − − ± − + − + −     

,              (31) 

0 0,b =  

( )2 2 2 3
0 0 0 0 0

1 3 9 32 6 12
2

ie ea e a a a aω = − ± − + − , 

2
0

1 .
2

aγ = − +  

In this case 0a  is arbitrary. By using this advantages (31) into Eqs. (29) and 
(30) along with (25) we have  

( )

( )
( )2 2 2 3

0 0 0 0 0

2 3 2 2 2 3
0 0 0 0 0 0

2 3
01 0

2
2 2 2 3

0 0 0 0 0

1
1 3 9 32 6 12
2

18 3 3 9 32 6 12 1
2

4

1 3 9 32 6 12 1 9 / 4
2

1 ,
tx ie ea e a a a a

e a i ie ea e a a a a

e ay a

ie ea e a a a a

e
a

a

−
 + − ± − + − 
 

 − − − ± − + − + 
 

= +
  − − ± − + − + −     

 
 × +
  

 

( )

( )
( )2 2 2 3

0 0 0 0 0

2 3 2 2 2 3
0 0 0 0 0 0

3 3
02

2
2 2 2 3

0 0 0 0 0

1
1 3 9 32 6 12
2

14 3 3 9 32 6 12 1
2

4

1 3 9 32 6 12 1 9 / 4
2

1 .
tx ie ea e a a a a

e a i ie ea e a a a a

e ay

ie ea e a a a a

e
a

a

−
 + − ± − + − 
 

 − − ± − + − + 
 

=
  − − ± − + − + −     

 
 × +
  

 

So from (26) we obtain solitary wave solutions of Eqs. (1) as follow  
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( )

( )

( )

( )2 2 2 3
0 0 0 0 0

2 3 2 2 2 3
0 0 0 0 0 0

2 3
0

1,1 0

2
2 2 2 3

0 0 0 0 0

1
1 3 9 32 6 12
2

18 3 3 9 32 6 12 1
2

4
,

1 3 9 32 6 12 1 9 / 4
2

1
tx ie ea e a a a a

e a i ie ea e a a a a

e a
x t a

ie ea e a a a a

e
a

a

ψ

−
 + − ± − + − 
 

   − − − ± − + − +      
  
  = +  
    − − ± − + − + −      

 
 × +
  

2
0

1
2 ,

ti x a

e
a

a
  + − +     






 

 

( )

( )

( )
( ) 22 2 2 3 00 0 0 0 0

2 3 2 2 2 3
0 0 0 0 0 0

3 3
0

2,1

2
2 2 2 3

0 0 0 0 0

1 11 3 9 32 6 12 22

14 3 3 9 32 6 12 1
2

4
,

1 3 9 32 6 12 1 9 / 4
2

1
t i x ax ie ea e a a a a

e a i ie ea e a a a a

e a
x t

ie ea e a a a a

e e
a

a

ψ

−   + − ++ − ± − + −    

  − − ± − + − +    
 
 =  
  − − ± − + − + −     

 
 × +
  

.
ta

a
    

 

 

Cas2:  

( )2 2 2 3 2
0 0 0 0 0 0 0 0

1 2
0

1 14 4 3 3 9 32 6 12
2 2 ,

4

ea a i ie ea e a a a a i a
a

e a

 − − + − ± − + − − − 
 =  

 

( )2 2 2 3 2
0 0 0 0 0 0 0

1
0

1 14 3 3 9 32 6 12
2 2 ,

4

a i ie ea e a a a a i a
b

ea

 − − ± − + − − − 
 =                (32) 

0 0,b =  

( )2 2 2 3
0 0 0 0 0

1 3 9 32 6 12 ,
2

ie ea e a a a aω = − ± − + −  
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2
0

1 .
2

aγ = − +  

In this case 0a  is arbitrary and by substituting relations (32) into Eqs. (29) and 
(30) along with (25) we have solutions of Eqs. (1) as follow

( )
( )

( ) 22 2 2 3 00 0 0 0 0

2 2 2 3 2
0 0 0 0 0 0 0 0

1,2 0 2
0

1 11 3 9 32 6 12 22

1 14 4 3 3 9 32 6 12
2 2,

4

1 ,
tt i x ax ie ea e a a a a

ea a i ie ea e a a a a i a
x t a

e a

e e
aa

aa

ψ

−     + − + + − ± − + −         

  − − + − ± − + − − −  
 = +





 
 × +
   

( )
( )

( ) 22 2 2 3 00 0 0 0 0

2 2 2 3 2
0 0 0 0 0 0 0

2,2
0

1 11 3 9 32 6 12 22

1 14 3 3 9 32 6 12
2 2,

4

1 .
tt i x ax ie ea e a a a a

a i ie ea e a a a a i a
x t

ea

e e
aa

aa

ψ

−     + − + + − ± − + −         

 − − ± − + − − − 
 =

 
 × +
  

3- Time fractional coupled Boussinesq equation

In following we consider the following time fractional coupled Boussinesq 
equation (BE) 

( )

0
,0 1.

0

x x xx

xxx xxx

u uu v qu
t
v uv pu qv

t

α

α

α

α

α

∂
+ + + = ∂ ≤ <

∂ + + − =∂

   (33) 

Where ,p q R∈ . Using the transformation ( ) ( ) ( ) ( ), , ,u x t U v x t Vx x= = ; 

where 
tkx
α

x ω
α

= + and once integrating respect toξ , Eq. (33) becomes an 

following ordinary differential equation, 
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2 2
1

3 2
2

,
2

,

kU U kV qk U R

V kUV pk U qk V R

ω

ω

′+ + + =

′′ ′+ + − =
                                                         (34) 

Where 1R and 2R  are the integration constants of first- and second-
equation of system (34), respectively. From first-equation of system (2), we 
get 

 

2
1

1 ,
2
kV R U U qkU

k
ω ′= − − − 

 
                                                         (35) 

By substituting Eq. (35) into the second-equation of system (34), and 
for simplifying we set 1 0R = and 2 0R = , we get the following covering 
equation 

( )
2

2 3 3 23 0
2 2

kU U U k p q U
k
ω ω ′′− − − + + = ,                                        (36) 

 

A brief application of the method to the FBE is provided in the 
second section of this paper. In section three graphical behavior of solutions 
introduced. Finally, conclusions are presented in the last section of the article. 

4. Three wave approaches to the FBE 

Primis, we suppose that Eq. (9) has the following three-wave solutions  

( ) ( ) ( )1 2 1 3 4 2cos 2 coshU e eδξ δξξ γ γ λ ξ γ γ λ ξ−= + + + .  (37) 

Where 1 4 1 2,.., , , ,g g d l l are unfamiliar constants to be determined 

later. With substituting (41) into (36) and collect coefficients of  

( ) ( ) ( ) ( )1 2 1 2, cos ,cosh ,sin ,sinh ,ie δξ λ ξ λ ξ λ ξ λ ξ 2, 1,0,1, 2i = − −  and let 

them equal to zero. So we obtain the algebraic equations and by solving these 
equations we have: 

Set 1: 1 3 2 40, 0, 0, 0γ γ γ γ= = ≠ ≠  then by solving algebraic equation we 
have 
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2
2 4

21 1, ,
2

1
2

,
2

w q pk k kγ γ − += = − = =                                               

(38) 

 

So we have general solutions of eq. (33) as follows 

( ) 2
1 1

2 2 2
2h1 1,

2
1 cos cos
2 2

q pk t tu x t kx kx q pk
αα

λ λ
αα

 
−

    
= −     

   
−


+ +

 
 

So from (35) we directly obtain

( ) 2 2 2 2

2 2

2

1 1 1 2

2

1 2
2 2

2
1

1 1
2 2

1

, cos cosh
2

1 cos cosh
2 2

1 s

2

2

2

i

1

n 1
2

w t tv x t R kx

t

q pk q pkw kx

k tkx kx

t

q pk q p

pq

k

k q kk x

αα

αα

α

λ λ
αα

λ λ
αα

λ
α

       
= − + −                 

       
− +                  

  
  

− + − +

− + −



+


− + 2 2

2sinh 1
2

q pk tqk kx
α

λ
α

   
+         

− +

  

Set 2: 2 4 1 30, 0, 0, 0γ γ γ γ= = ≠ ≠  then by solving algebraic equation we 
have 

 
2

1 3 3
3

2 4 2 4 2
2 2

2 , , ,2
3

k q k p w w q pk k k
k

γ
γ

δ δ γ γ δ−
=

+
= += =                      (39) 

 

So we have  

( )
2 2 2 22 4 2 2 4

3

2

2 32, ]2
3

t kq pk tqx pkkxk q k pu x w
k

t e e
αα

δ δ δ δ
αα γ

γ
δ δ + 

   
+ − +     

  
+

+
= +

−  

 

From (39) we have 
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( )
2 2 2 2

2 2 2 2

2 2

2 4 2 2 4 2

3

2 4 2 2 4 2

2

2

2 4 2 2 4 2

3

3

3
3

3
2

2 ,

1

2
3

2
3

2
3

2

t tkx kx

t tk

q pk q pk

q qx kx

tk

pk pk

q pkx

v k q k ep w
k

k q k p w
k

k q k p w

x t e
k

e

k

e

q e

αα

αα

α

δ δ δ δ
αα

δ δ δ δ
αα

δ δ

δ δ

δ δ

δ

γ

δ

γ
γ

δ

γ

γ





+ +

+ +

  
+ − +      

   

   
+ − +      



+ +

 

= + −
+ −

+ −

+ −

 
 − + −
 
 

2 2

3

q px k tk

e
α

δ δ
αα γ δ

   
− +      

 
+

 
 
 −
 
 
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