# YARIİLETKENLERİN SABİT HACİMDE VE BASINÇTA ISI KAPASİTELERİNİN EİNSTEİN-DEBYE YAKLAŞIMI KULLANILARAK İNCELENMESİ

Doç. Dr. Ebru ÇOPUROĞLU Yüsra KOÇAK TÜMAY



## YARIİLETKENLERİN SABİT HACİMDE VE BASINÇTA ISI KAPASİTELERİNİN EİNSTEİN-DEBYE YAKLAŞIMI KULLANILARAK İNCELENMESİ

#### Doç. Dr. Ebru ÇOPUROĞLU<sup>1</sup> Yüsra KOÇAK TÜMAY<sup>2</sup>

DOI: https://dx.doi.org/10.5281/zenodo.10370238



<sup>1</sup> Tokat Gaziosmanpaşa Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü, Tokat, Türkiye. Orcid no: 0000-0002-4363-5730

<sup>\*</sup>Bu çalışma tezden üretilmiştir.

<sup>&</sup>lt;sup>2</sup> MEB, Gölbaşı Anadolu Lisesi, Gölbaşı, Adıyaman, Orcid no: 0000-0003-0887-5197

Copyright © 2023 by iksad publishing house All rights reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means, including photocopying, recording or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. Institution of Economic Development and Social Researches Publications® (The Licence Number of Publicator: 2014/31220) TURKEY TR: +90 342 606 06 75 USA: +1 631 685 0 853 E mail: iksadyayinevi@gmail.com www.iksadyayinevi.com

It is responsibility of the author to abide by the publishing ethics rules. The first degree responsibility of the works in the book belongs to the authors. Iksad Publications -2023©

ISBN: 978-625-367-463-2 Cover Design: İbrahim KAYA December / 2023 Ankara / Türkiye Size: 16x24cm

## İÇİNDEKİLER

#### <u>Sayfa</u>

## SİMGELER VE KISALTMALAR

| Simgeler                        | Açıklama                                          |  |
|---------------------------------|---------------------------------------------------|--|
| $A_0$                           | Sabit                                             |  |
| $C_{V}$                         | Sabit Hacim                                       |  |
| $C_P$                           | Sabit Basınç                                      |  |
| ${\cal E}_F$                    | Fermi enerji                                      |  |
| $g(\omega)$<br>h                | Birim aralıkta Fotonun Yoğunluğu<br>Planck Sabiti |  |
| $\hbar$                         | Planck Sabiti                                     |  |
| k <sub>B</sub>                  | Boltzmann sabiti                                  |  |
| $N_A$                           | Avagadro Sayısı                                   |  |
| S                               | Düğüm noktasındaki atom sayısı                    |  |
| Т                               | Isı Kapasitesi                                    |  |
| V                               | Harmonik titreşim frekansı                        |  |
| $\mu$                           | Kimyasal potansiyel                               |  |
| $\omega_{_D}$                   | Frekans                                           |  |
| $	heta_{\scriptscriptstyle E}$  | Einstein Sıcaklığı                                |  |
| $\theta_{\scriptscriptstyle D}$ | Debye Sıcaklığı                                   |  |
|                                 |                                                   |  |

| Kısaltmalar | Açıklama                            |
|-------------|-------------------------------------|
| PPM         | Milyonda bir birimlik madde miktarı |

## GİRİŞ

Doğada tüm maddeler elektrik geçirme özelliğine göre iletken, yalıtkan ve yarıiletken olarak üç gruba ayrılır. Yalıtkanlar, normal kosullar altında elektrik akımını iletmeyen bir malzemedir. Çoğu iyi yalıtkan, tek elementli malzemelerden ziyade bileşiklerdir ve çok yüksek dirençlere sahiptir. Değerlik elektronları atomlara sıkıca bağlıdır; bu nedenle, bir yalıtıcıda çok az serbest elektron vardır. Yalıtkanlara örnek olarak kauçuk, plastik, cam, mika ve baskalarını göstermek olur. İletkenler, elektrik akımını kolayca ileten bir malzemedir. Çoğu metal iyi iletkendir. En ivi iletkenler, atoma çok zayıf bir şekilde bağlanmış tek bir değerlik elektronuna sahip atomlarla karakterize edilen; Bakır, gümüş, altın ve alüminyum gibi tek değerlik elektronlu malzemelerdir. Bu zayıf bağlı valans elektronları, atomdan kurtulmak için az miktarda enerji eklenmesiyle serbest elektron haline gelebilir. Bu nedenle, iletken bir malzemede serbest elektronlar akım taşımak için mevcuttur. Bir yarıiletken, elektrik akımı iletme özelliğinde iletkenler ve yalıtkanlar arasında bulunan bir malzemedir. Saf durumda bir yarıiletken ne iyi bir iletken ne de ivi bir valıtkandır. Tek elementli varı iletkenler Antimon, arsenik, astatin, bor, polonyum, tellür, silikon ve germanyumdur. Galyum arsenit, indiyum fosfit, galyum nitrür, silisyum karbür, silikon germanyum gibi bileşik yarıiletkenler de yaygın olarak kullanılır. Tek elementli yarı iletkenler, dört değerlik elektronlu atomlarla karakterize edilirler. Silikon, en yavgın kullanılan yarı iletkenlerdendir (Balkanski ve ark., 2000; Mishra ve Singh, 2007; Grundmann, 2010; Fraser, 1986; Roy 2004).

Kristal yapıya sahip olan ve oda sıcaklığında çok az serbest elektron içeren maddelere yarıiletkenler denir. Yarıiletkenler oda sıcaklığında bir yalıtkan gibi davranır. Elektriksel direncine göre, iletken ve yalıtkan arasında bir değere sahip olurlar. Yarıiletkenlere uygun katkılar eklenirse kontrollü iletkenlik özelliği sağlanabilir. Bazı yarıiletken maddelere örnek olarak silikon, germanyum ve karbon gösterilebilir. Yarıiletkenler, transistörler, güneş pilleri, ışık yayan diyotlar (LED'ler) ve dijital ve analog entegre devreler dahil modern elektroniklerin temel yapı taşlarıdır.

Bir yarıiletkenin özelliklerinin modern yaklaşımı, bir kristal yapı içindeki ve ayrıca bir kafes içindeki elektronların ve deliklerin hareketini açıklayabilen kuantum fiziğine dayanmaktadır. Yarıiletken malzemelerin elektriksel iletkenliği, bir metalinkinden farklı olarak sıcaklığın artması ile artar. Yarıiletken cihazlar, akımı bir yönde diğerine göre daha kolay geçirme, değişken direnç gösterme ve ışığa veya ısıya duyarlılık gibi bir dizi yararlı özelliği gösterebilir. Bir yarı iletken malzemenin elektriksel özellikleri, katkı maddelerinin kontrollü olarak eklenmesiyle veya elektrik alanlarının veya ışığın uygulanmasıyla değiştirilebildiğinden, yarıiletkenlerden yapılan cihazlar yükseltme, anahtarlama ve enerji dönüşümü için kullanılabilmektedir (Roy, 2004; Yacobi, 2003; Łukasiak ve Jakubowski, 2010).

Yarıiletkende elektrik akım iletimi, toplu olarak yük taşıyıcıları olarak bilinen serbest elektronların veya "deliklerin" hareketi yoluyla gerçekleşir. "Katkılama" olarak bilinen yarıiletken bir malzemeye katkı atomlarının eklenmesi, içindeki yük taşıyıcılarının sayısını büyük ölçüde artırır. Katkılı bir yarıiletken çoğunlukla serbest delikler içerdiğinde "p-tipi" olarak adlandırılırken, çoğunlukla serbest elektron içerdiğinde "n-tipi" olarak bilinir. Elektronik cihazlarda kullanılan yarıiletken malzemeler, p ve n tipi katkı maddelerinin yerini ve konsantrasyonunu kontrol etmek için hassas koşullar altında katkılanabilmektedir. Yarıiletken malzemelerin bazı özellikleri, 19. yüzyılın ortalarında ve 20. yüzyılın ilk yıllarında gözlemlenebilmiştir. Kuantum fiziğinin gelişmesi, 1948'de transistorun gelişmesine izin verdi. Bazı saf elementler ve birçok bileşikler yarıiletken özellikler sergilemesine rağmen, Silikon, Germanyum ve Galyum bileşikleri elektronik cihazlarda en yaygın kullanılanlardır (Balkanski ve ark., 2000; Mishra ve Singh, 2007; Grundmann, 2010).

Yariiletkenlerin ortaya çıkmasının tarihi, malzemelerin elektriksel özellikleri üzerine deneylerle başlar. Direncin negatif sıcaklık katsayısı, düzeltme ve ışığa duyarlılık özellikleri ile yariiletkenler 19. yüzyılın başlarından itibaren gözlemlenmiştir. 1914 yılında Johan Koenigsberger, katı malzemeleri metaller, yalıtkanlar ve "değişken iletkenler" olarak sınıflandırdı. Felix Bloch, 1928'de elektronların atomik kafesler boyunca hareketine ilişkin bir teori geliştirdi. 1931 yılında, bant teorisi Alan Herries Wilson tarafından oluşturulmuş ve bant boşlukları kavramı geliştirilmiştir. Walter H. Schottky ve Nevill Francis Mott, potansiyel bariyer modellerini ve bir metal-yarıiletken bağlantısının karakteristiklerini geliştirdiler (Morris, 1990; Sze ve Ng, 2006; Zhang ve ark., 2017).

Yarıiletkenleri kullanan cihazlar, yarı iletken teorisi daha güvenilir cihazların inşası için bir rehber sağlamadan önce ilk başta deneysel bilgiye dayalı olarak inşa edildi. Alexander Graham Bell, 1880'de sesi bir ışık huzmesi üzerinden iletmek için selenyumun ışığa duyarlılık özelliğini kullandı.

Charles Fritts tarafından 1883 yılında selenyum ile kaplanmış metal bir plaka ve ince bir altın tabakası kullanılarak düşük verimli çalışan bir güneş pili inşa edildi; cihaz 1930'larda fotoğrafik ışık ölçerlerinde ticari olarak kullanışlı hale geldi (Grundmann, 2010). Kurşun sülfitten yapılan noktasal temaslı mikrodalga detektör redresörleri Jagadish Chandra Bose tarafından 1904'te kullanıldı; doğal kükürtlü kurşun veya diğer malzemeleri kullanan detektörü, radyonun geliştirilmesinde yaygın bir cihaz haline geldi. 1906'da H.J. Round, elektrik akımı silikon karbür kristallerinden geçtiğinde ışık yayılmasını gözlemledi, bu ışık yayan diyot olarak belirlendi. Oleg Losev, 1922 yılında benzer ışık yayılımını gözlemledi, ancak o sırada etkin pratik bir faydası yoktu. II. Dünya Savaşı'ndan önceki yıllarda, kızıl ötesi tespit ve iletişim cihazları, kurşun sülfür ve kurşun-selenid materyalleri üzerine araştırmalar yapılmasını sağladı. Bu cihazlar, gemileri ve uçakları tespit etmek, kızılötesi telemetreler ve sesli iletişim sistemleri için kullanıldı (Zhang ve ark., 2017; Abeles, 1963; Dong ve ark., 2001; Kim ve Kaviany, 2016; Raya-Moreno ve ark., 2019; Kecik ve ark., 2018).

İkinci Dünya Savaşı sırasında tutarlı kalitede detektör geliştirmek için silikon malzemeler üzerinde önemli araştırma ve geliştirme yapıldı (Balkanski ve ark., 2000; Mishra ve Singh, 2007; Grundmann, 2010). Bir katıhal amplifikatörü geliştirmek için birçok çaba gösterildi, ancak bunlar yarıiletken malzemelerin sınırlı sayıdaki teorik çalışmalarından dolayı başarısız oldu (Grundmann, 2010). 1922 yılında Oleg Losev, radyo için iki uçlu, negatif direnç yükselteçleri geliştirdi. 1926 yılında Julius Edgard Lilenfeld, modern bir alan etkili transistöre benzeyen bir cihazın patentini aldı, ancak bu pratik değildi. Bardeen ve Brattain, yüzeyle ilgili olayların, Shockley, az sayıda yük taşıyıcılarının toplu iletimini tercih ederken, yeni cihazın çalışmasını inceledi. Yaklaşık bir ay sonra bir p-n tip bir bağlantı transistörü teorisi geliştirdi (Kecik ve ark., 2018). Shockley, Bardeen ve Brattain 1956'da bu çalışmalarına göre Nobel Fizik Ödülü'nü aldılar (John Bardeen ayrıca süperiletkenlik teorisini verdiği için 1972'de daha bir Nobel Ödülü aldı). Şubat 1948'de John Shive, çok ince bir germanyum levhanın (0,01 cm) zıt taraflarına yerleştirilmiş yayıcı ve toplayıcıyla doğru çalışan bir nokta temas transistörünü geliştirdi. Bu konfigürasyonda, iletimin gerçekten yüzey boyunca değil, toplu halde gerçekleştiğini gösterdi (yayıcı ve toplayıcı arasındaki yüzey boyunca mesafe çok daha uzun olurdu) (Ross, 1998). Ancak o zaman, Shockley transistör ile ilgili teorisini bilim insanlarına (Ross, 1998; Riordan ve ark., 1999) sundu. Aynı yıl Jean Hoerni düzlemsel transistörü önerdi. Koruyucu görevi gören oksit aradan kaldırılmadı ve etkisizleştirici bir tabaka olarak işlev gördü. (Ross (1998)) Kademeli katkı vasıtasıyla tabana yerleşik bir elektrik alanı oluşturulabilirdi. Bu hetero-yapı düşüncesi, fabrikasyon problemleri nedeniyle kolaylıkla uygulamaya konulamadı (Perry, 2002).

Literatürden de görüldüğü gibi yarıiletken malzemelerin bazı özellikleri, 19. yüzyılın ortalarında ve 20. yüzyılın ilk yıllarında gözlemlendi. Kuantum fiziğinin gelişmesi ile, 1948'de transistörün ortaya çıkmasını sağladı. Bazı saf elementler ve bircok bileşik yarıiletken özellikler sergilemesine rağmen, silikon, germanyum ve galyum bileşikleri elektronik cihazlarda en yavgın kullanılanlardır (Zhang ve Ark., 2017). Bu elementlerin ticari olarak en önemlileri silikon ve germanyumdur. Silikon ve germanyum burada etkili bir şekilde kullanılır çünkü en dıştaki kabuklarında aynı anda eşit olarak elektron kazanma veya kaybetme yeteneği veren 4 değerlik elektronu vardır. İkili bileşikler, özellikle galyum arsenit, gruplar II ve VI, gruplar IV ve VI gibi grup III ve V' deki elementler arasında ve farklı grup IV elementler arasında, ör. silisyum karbür, yarıiletken özelliğine sahip olurlar (Liang ve Towe, 2018; Barbagiovanni ve ark., 2014).

Günümüzde bazı üçlü bileşikler, oksitler ve alaşımlar, organik bileşiklerden yapılan organik yarıiletkenler elektrik elektronik teknolojisinde yaygın olarak kullanılmaktadır. En yaygın yarıiletken malzemeler kristal katı maddelerdir, ancak amorf ve sıvı yarıiletkenler de bilinmektedir. Bunlar, hidrojene amorf silikon ve çeşitli oranlarda arsenik, selenyum ve tellür karışımlarını içerir. Bu bileşikler, daha iyi bilinen yarı iletkenler ile ara iletkenlik özelliklerini ve sıcaklıkla hızlı bir iletkenlik değişiminin yanı sıra, ara sıra negatif direnci paylaşırlar. Bu tür düzensiz malzemeler, silikon gibi geleneksel yarı iletkenlerin sert kristal yapısına sahip değillerdir (Lee ve ark., 2015; Wehmeyer ve ark., 2017; Varshni, 1967; Anderson, 1970).

Günümüzde yarıiletken malzemeler modern teknolojinin sektöründe kullanılmaktadır. Genellikle daha vüksek her elektronik kalitede malzeme gerektirmeyen, kirliliklere ve radyasyon hasarına nispeten duyarsız olan ince film yapılarında kullanılırlar. Özellikle teknik amaçla yüksek sıcaklık malzemeleri vaygın olarak kullanılmaktadır. Bu nedenle yarı iletken malzemelerin sıcaklığının artırılması gerekmektedir. Bu nedenle, bu malzemelerin farklı özellikleri sıcaklığa bağlı olarak değisim gösterir. Bu çalışmada yarıiletkenlerin termodinamik özelliklerinden öz 151 miktarlarının sıcaklığa bağlı olarak değişmesi teorik olarak incelenmiştir. Bilindiği gibi, katıların termal özelliklerini incelenmesi için literatürde farklı yöntemler vardır. Bu yöntemler içerisinde en yaygın olarak kullanılanları Einstein yaklaşımı, Debye modeli ve farklı yarıemprik yaklasımlardır (Landau ve Lifshits, 1980; Einstein, 1907; Debye ,1912; McCombie, 1971).

Dulong- Petit yasasına göre katıların sabit basınçta atomik ısı kapasitesi, çok sayıda maddeler için 6.2' ye eşittir. Yapılan deneysel çalışmalar sıcaklığın küçük değerlerinde öz ısı miktarının değiştiğini göstermektedir. Yani küçük sıcaklıklarda Dulong- Petit yasasının geçerli olmadığı görüldü. Bu problemin çözümü Einstein (1907) tarafından Planck'ın yeni kuantum teorisi, katı maddeyi oluşturan parçacıkların hareketine uygulayan temel bir makalesinde verildi. Einstein yaklaşımına göre temel zorluklar şimdilerde çözülmüş olmasına rağmen, parçacıkların hareketinin ayrıntıları genel şekilde dikkate alınmadığından deneyle çok uyumlu bir sonuç beklenemezdi. Özellikle, Einstein'ın ısı kapasitesi formülü düşük sıcaklıklarda oldukça tatmin edici sonuçlar vermedi. Teorinin yetersizliklerinin giderilmesi için bir sonraki adım Debye (1912) tarafından gerçekleştirilmiştir (Debye, 1912; Ziman, 1965). Yakın zamanda Askerov ve Cankurtaran (Askerov ve Cankurtaran, 1994; Cankurtaran ve Askerov, 1996) çalışmasında Einstein ve Debye yöntemlerini birleştirerek katıların termodinamik özelliklerini incelemek için daha geniş kapsamlı yaklaşım olan Einstein-Debye yaklaşımını önerdiler. İncelemelerden görülür ki Einstein-Debye yaklaşımına göre yapılan hesaplama sonuçları deneysel verilerle daha çok uyum içerisindedir. Literatürde Einstein-Debye yaklaşımına göre katıların termodinamik özelliklerinin incelenmesi ile ilgili az sayıda çalışma vardır.

Önerilen çalışmada Einstein- Debye yaklaşımı dikkate alınarak bazı yarıiletkenlerin ısı kapasiteleri sıcaklığın geniş aralığında incelenecektir. Formüllerden görüldüğü gibi ısı kapasitesinin hassas hesaplanması Debye fonksiyonu için oluşturulan analitik formüllerden alınan sonuçlara bağlıdır. Einstein- Debye yaklaşımı için kaynak oluşturulan formüller (Askerov ve Cankurtaran, 1994; Cankurtaran ve Askerov, 1996) Einstein ve Debye yaklaşımlarına göre arzu edilen hassaslıkta sonuçlar verdiği yapılan çalışmalardan görülmektedir. Bu nedenle bu kitapta örnek olarak düşünülen yarıiletkenlerin ısı kapasitelerinin hesaplanması önerilen yönteme ve formüllere göre incelenecektir.

Bu çalışmada, Askerov ve Cankurtaran (1994) çalışmasında Einstein ve Debye yöntemlerini birleştirerek katıların termodinamik özelliklerini incelemek için daha geniş kapsamlı yaklaşım olan Einstein- Debye yaklaşımını önerdiler. Einstein- Debye yaklaşımına göre yapılan hesaplama sonuçlarının deneysel verilerle daha çok uyum içerisinde olduğu tespit edildi (Eser ve ark., 2020; Eser ve Koç 2021; Mamedov 2014). Fakat bu gelişmelere rağmen literatürde Einstein- Debye yaklaşımına göre katıların termodinamik özelliklerinin incelenmesi ile ilgili az sayıda çalışma vardır. Bu çalışmada *Si*, *Ge*, *GaAs*, *InP*, *InAs ve ZnO* yarıiletkenlerinin ısı kapasitelerinin sıcaklığa göre değişimi Einstein- Debye yaklaşımına göre hesaplanarak incelenecektir. Alınan sonuçların *Si*, *Ge*, *GaAs*, *InP*, *InAs ve ZnO* gibi yarıiletkenlerin teknolojik uygulamalarında faydalı olacağı kanaatindeyim.

#### 2. KAYNAK ÖZETLERİ 2.1. Yarıiletkenler

Metallerin iletkenlik özelliklerini önce terminolojik olarak anlatmağa çalışalım. Fermi enerji seviyesi iki bant arasındaysa, üstündeki banda iletim bandı ve altındaki banda değerlik (Valans) bandı denmektedir. Bilindiği gibi bant aralığı, değerlik ve iletim bandı arasındaki enerji farkına denmektedir. Bir metalde, Fermi seviyesi bir bant içindedir, bu nedenle değerlik ve iletim bantları örtüşür. Yalıtkanda büyük bir bant aralığı vardır. Bir yarıiletken, bir yalıtkan ile bir iletken arasında bir yerdedir: Tipik olarak 1eV düzeyinde bir bant aralığına sahiptir (Schwartz, 2014).



**Şekil 1.** Şekilden görüldüğü gibi metallerde bant aralığı yoktur, yarıiletkenler küçük bir bant aralığına ve yalıtkanlar büyük bir bant aralığına sahiptir. (Matthew Schwartz, Statistical Mechanics, Springer, 2019)

Bant aralığının enerji boyutunun yaklaşık olarak 1eV olması nereden geliyor? Bu soruya cevap vermek için her şeyden önce, Fermi dağılımına bakalım (Schwartz,2014):

$$f(\varepsilon) = \frac{1}{e^{\beta(\varepsilon - \varepsilon_F)} + 1}$$
(2.1.1)

Burada  $\mu = \varepsilon_F$  durumu sadece mutlak sıcaklıkta T = 0' da tam olarak doğrudur, ancak bu durum metallerde gerçek olmaya çok yakın, çünkü  $T \square T_F$  değerlerini alır (örnek olarak bakır için  $T_F \approx 80000 K and \varepsilon_F \approx 7 eV$  değerlerini alır). Burada serbest elektron gaz modelini kullanmıyoruz, bu nedenle  $\varepsilon_{F}$  Fermi enerjisini başka türlü hesaplayamayız. Fermi dağılımı  $\varepsilon = \varepsilon_F$ durumunda  $f(\varepsilon_F) = \frac{1}{2}$  olur. Bu, bir iletkende  $\varepsilon_F$  enerji seviyesinin %50 dolu olma olasığına sahip olacağı anlamına gelir. Bir yalıtkan veya yarı iletkende, elektronlar iletim bandına geçmek için bant aralığını geçmeleri gerekir. Bu nedenle, değerlik bandındaki boşlukların sayısı, iletim bandındaki uyarılma sayısı ile aynı olmalıdır ve bu nedenle Fermi dağılımı  $\varepsilon_{F}$  etrafında simetrik değerler almalıdır, başka bir deyişle, Fermi seviyesi bir bant aralığındayken, her zaman bant aralığının ortasındadır. Bu önemli gerçek tamamen geneldir ve aşağıdaki katkılı yarı iletkenleri anlamak için çok önemlidir.

Şimdi, oda sıcaklığında  $k_B T = 0.025 \, eV$  durumuna bakalım. Daha sonra, iletim bandının tabanında,  $\varepsilon_c = \varepsilon_F + \frac{1}{2} \varepsilon_{bg}$  enerjisinde bir elektron bulma olasılığını hesaplayabiliriz:

$$f\left(\varepsilon_{F} + \frac{1}{2}\varepsilon_{bg}\right) = \frac{1}{Exp\left(\frac{\varepsilon_{bg}}{2k_{B}T}\right) + 1} \approx Exp\left(-\frac{\varepsilon_{bg}}{0.05\,eV}\right)$$
(2.1.2)

(2.1.2) fonksiyonun değerinin üstel olarak azaldığını görüyoruz.  $\varepsilon_{bg} = 1 eV$  olarak alırsak, iletim bandının tabanı sadece  $10^{-9}$  olasılıkla dolu olma durumuna sahiptir.  $\varepsilon_{bg} = 2 eV$  olursa olasılık zaten  $10^{-18}$  olur ve  $\varepsilon_{bg} = 3eV$  de ise  $10^{-27}$  değerine yaklaşır. Elektron sayısının  $N_A \square 10^{24}$  civarında olduğu göz önüne alındığında, bant aralığının yaklaşık  $\varepsilon_{bg} = 1 - 2eV$  aralığında olabileceği sonucuna varabiliriz.

Bu benzersiz özelliklere sahip yarıiletkenler, elektrik akımını gerektiği gibi kontrollü bir şekilde iletmek için mükemmel bir malzemedir. İletkenlerin aksine, yarı iletkenlerdeki yük taşıyıcılar yalnızca dış enerji (termal) aktarımı nedeniyle ortaya çıkar. Belli sayıda Valans elektronunun enerji boşluğundan iletim bandına geçmesi nedeniyle eşit miktarda boşluklar, yani delikler bırakır. Elektronlardan ve boşluklardan kaynaklanan elektrik akımı iletimi de aynı derecede önemlidir. Yarıiletkenler aşağıdaki gibi önemli özelliklere sahiptirler:

- Direnç: 10-5106 m'ye kadar
- İletkenlik: 1010-6 mho / m'ye kadar
- Sıcaklık dayanımı katsayısı: Negatif
- Akım Akışı: Elektronlar ve delikler vasıtasıyla gerçekleştirilir.
- Yarı iletken, Sıfır Kelvin'de bir yalıtkan gibi davranır. Sıcaklığın arttırılmasında iletken görevi görür.
- Üstün elektriksel özelliklerinden dolayı yarı iletkenler, yarı iletken cihazları enerji dönüşümü, anahtarlar ve amplifikatörlere uygun hale getirmek için doping yoluyla değiştirilebilir.
- Daha az güç kaybı.
- Yarı iletkenler daha küçük boyuttadır ve daha az ağırlığa sahiptir.
- Dirençleri iletkenlerden daha yüksek ancak izolatörlerden daha düşüktür.

• Sıcaklık artışı ile yarı iletken malzemelerin direnci azalır ve tam tersi.

Yarı iletkenler genel olarak iki gruba ayrılır:

- Katkısız yarıiletkenler
- Katkılı yarıiletkenler

#### 2.1.1. Katkısız yarıiletkenler

Basit bir tanımlamayla, katkısız yarıiletkenler, çok saf bir yarıiletken malzemeden oluşan maddelerdir. Katkısız variiletkenlere örnek olarak C, Si, Ge ve başka elementleri gösterebiliriz. Daha teknik terminolojide, katkısız bir yarı iletkenin, boşluk sayısının iletim bandındaki elektron sayısına eşit olduğu bir yarıiletken olduğu belirtilebilir. Bu tür yarı iletkenler durumunda yasak enerji boşluğu çok hassastır ve oda sıcaklığında mevcut olan az enerji bile valans elektronlarının iletim bandına geçmesi için yeterlidir. Katkısız bir yarıiletkenin bir başka karakteristik özelliği, bu tür malzemelerin Fermi seviyesinin, değerlik bandı ile iletim bandı arasında bir yerde bulunmasıdır. Bir yarıiletkenin uçlarına potansiyel fark uygulanırsa, elektronlar pozitif kutba doğru hareket ederken, delikler negatif kutba doğru hareket edecektir. Yarı iletken içindeki toplam akım, serbest elektronlar ve deliklerin hareketi nedeniyle oluşan akımların toplamıdır. Yarıiletkenin sıcaklığı artarsa. delik-elektron çiftlerinin sayısı artar ve yarı iletken boyunca akım artar fakat sıcaklık düşerse tersi olur. Katkısız yarıiletkenlerin bant yapısını Şekil 2'deki gibi göstere biliriz:



**Şekil 2**. Katkısız yarıiletkenlerin bant yapısı ve  $\varepsilon_F = \frac{1}{2} \varepsilon_g$  olur.

#### 2.1.2. Katkılı yarıiletkenler

Yarıiletken malzemenin saf durumuna, çok küçük miktarlarda katkı ekleyerek bilinçli olarak oluşturulan yarıiletkenlerdir. Bu tür katkı eklenmesinin gerçekten çok küçük olduğu ve tipik bir katkı maddesinin yüz milyonda bir kısımlık parçasında konsantrasyona sahip olabileceği veya 0.01 ppm'ye eşdeğer olabileceği akılda tutulmalıdır. Katkılama için seçilen malzemeler, valans bandında 5 elektrona sahip olacak şekilde veya valans bandında sadece 3 elektrona sahip olacak şekilde seçilir.

Buna göre, bu tür katkılar sırasıyla beş veya üç değerlikli katkılar olarak bilinir. Katkılama tipi ayrıca P-tipi ve N-tipi yarı iletkenler olmak üzere iki tip yarıiletken malzeme ortaya çıkarır. Bir beş değerlikli katkı, donör katkısı olarak bilinir, çünkü kovalent bağlanma için gerekli olmayan ve iletim bandına kaydırılmak üzere kolayca erişilebilen kristal yapıya ekstra bir elektron kazandırır. Bu elektron, değerlik bandında ona karşılık gelen bir deliğe yol açmaz, çünkü zaten fazladır, bu nedenle böyle bir malzeme ile doping üzerine, germanyum gibi temel malzeme deliklerden daha fazla elektron içerir, dolayısıyla isimlendirme N tipi katkılı yarıiletkenler olarak adlandırılır.

Öte yandan, Germanyum' a bor gibi üç değerlikli bir katkı maddesi eklendiğinde, üst kısımda tarif edilenin tam olarak ters işlemi nedeniyle ek veya ekstra delikler oluşur. Bu nedenle, alıcı olarak da bilinen bu katkı, bir P tipi yarıiletken oluşturur. Bu nedenle elektronlar n-tipindeki çoğunluk taşıyıcılarıdır (akımın), delikler ise azınlık taşıyıcılarıdır. Bunun tersi P tipi yarı iletkenler için geçerlidir. Diğer bir fark, katkılı yarı iletkenlerin Fermi seviyesinin, değerlik bandı ile iletim bandı arasında bir yerde olduğu halde, n-tipi durumunda yukarı doğru kayarken, bariz nedenlerden dolayı P-tipi durumunda aşağı doğru kaymasıdır (Şekil 3). P-tipi yarı iletken (Şekil 4) ve N-tipi yarı iletken (Şekil 5) gösterilmiştir.



Şekil 3. Katkılı yarıiletkenlerin enerji bandı



Şekil 4. P tipi yarıiletken (Schwartz, 2014)



Şekil 5. N tipi yarıiletken (Schwartz, 2014)

#### 3. MATERYAL ve YÖNTEM 3.1. Katıların Isı Miktarı İçin Einstein Modeli

Dulong-Petit Yasası, tüm katılar için sabit hacimde  $C_V$ molar ısı kapasitesinin 3R 'ye eşit olduğunu belirtir, burada R evrensel gaz sabitidir. 19. yüzyılın başlarında emprik olarak elde edilen bu sonuç, daha sonra sistemin ortalama enerjisi ile sıcaklığı arasında ilişki kuran genel bir teoremden kolayca türetilmiştir. Einstein yaklaşımında her molekülün üç serbestlik derecesine sahip harmonik bir osilatör olarak titreştiği kabul edilmektedir. Her bir serbestlik derecesi ortalama olarak  $\frac{1}{2}k_BT$ kinetik enerjiye ve  $\frac{1}{2}k_BT$  potansiyel enerjiye sahipti, dolayısıyla

molekül başına ortalama toplam enerji:

$$E = 6 \times \frac{1}{2} k_B T = 3k_B T \tag{2.2.1}$$

olur. Her bir mol başına düşen enerji  $3k_BTN_A$  olur, burada  $N_A$ Avagadro sayısıdır. Bu durumda molar ısı kapasiteni aşağıdaki gibi yazarız:

$$C_V = \frac{\partial E}{\partial T} = 3k_B N_A = 3R \tag{2.2.2}$$

Deneysel olarak, sıcaklık kritik bir değerin üzerinde olduğu ve her malzeme için farklı olduğu sürece (2.2.2) formülü katı maddeler için oldukça iyi sonuçlar vermektedir. Bununla birlikte, sıcaklık kritik değerin altına düştüğünde Dulong ve Petit yasası başarısız olur ve  $C_v \rightarrow 0$  olur. Klasik istatistik fizik (kinetik teori) bunun neden meydana geldiğine dair hiçbir ipucu vermez. 19 | YARIİLETKENLERİN SABİT HACİMDE VE BASINÇTA ISI KAPASİTELERİNİN EİNSTEİN-DEBYE YAKLAŞIMI KULLANILARAK İNCELENMESİ

Einstein, Planck'ın siyah cisim deneyindeki kutunun duvarlarındaki moleküler titreşimleri incelemesinin aslında tüm katılarda moleküler titreşimlerin genel bir özelliği olduğunu fark etti. Buna göre, titreşimin ortalama enerjisi  $3k_BT$  değil, denklem (2.2.3)'da verilen Planck'ın bir siyah cismin emisyon spektrumunun enerjisi olduğunu düşündü:

$$\left\langle E\right\rangle = \frac{h\nu}{e^{h\nu/k_BT} - 1} \tag{2.2.3}$$

Burada v molekülün harmonik titreşim frekansıdır.

Yüksek sıcaklıkta  $\frac{h\nu}{k_BT}$  1 olduğundan

$$e^{h\nu/k_BT} - 1 \approx \left(1 + \frac{h\nu}{k_BT} + \dots\right) - 1 \approx \frac{h\nu}{k_BT}$$
(2.2.4)

elde edilmektedir. (2.2.4) denklemini (2.2.3) da yerine yazarsak ortalama enerjinin  $\langle E \rangle \rightarrow k_B T$  olduğunu görürüz. Yani kinetik teoriden alınan sonuç alınır. Küçük sıcaklıklarda ise sonuç farklı olur. (2.2.3) formülünü kullanarak bir mol  $N_A$  molekülünün titreşim enerjisini aşağıdaki gibi yazarız:

$$E = 3N_A \left\langle E \right\rangle = \frac{3N_A h\nu}{e^{h\nu/k_B T} - 1}$$
(2.2.5)

Buradan molar ısı miktarını aşağıdaki gibi hesaplarız:

$$C_{V} = \frac{\partial E}{\partial T} = 3N_{A} \left(\frac{h\nu}{k_{B}T}\right)^{2} \frac{e^{h\nu/k_{B}T}}{e^{h\nu/k_{B}T} - 1}$$
(2.2.6)

Burada  $\theta_E = \frac{hv_E}{k_B}$  Einstein sıcaklığı olduğunu dikkate alırsak ısı

kapasitesi için aşağıdaki formülü alırız:

$$C_{V} = \frac{\partial E}{\partial T} = 3N_{A} \left(\frac{\theta_{E}}{T}\right)^{2} \frac{e^{\theta_{E}/T}}{e^{\theta_{E}/T} - 1}$$
(2.2.7)

Einstein yeni varsayımları kullanarak sıcaklığın tüm aralığında 181 kapasitelerinin değişimi için yeni formül almış oldu. Denklem (2.2.6)'da  $T \rightarrow 0$  durumunu dikkate alırsak  $C_V \rightarrow 0$  yaklaşır ve  $T \rightarrow \infty$  yaklaştığında ise  $C_V \rightarrow 3k_B N_A = 3R$  olur.

Şekil 6'da, elmas için, Einstein'ın yaklaşımından alınan (2.2.7) denkleminden ve deneyden alınan sonuçlar düşük sıcaklık değerleri için verilmiştir. Sonuçlardan görüldüğü gibi Einstein'ın probleme yaklaşımı, Dulong ve Petit yasasına göre açıkça önemli bir gelişmeydi, ancak çok düşük sıcaklıklardaki sapmalara dikkat edilmesi gerekirdi. Debye, Einstein'ın çalışmasını geliştirerek molekülleri tek bir frekansla salınma yaklaşımını, sıfırdan maksimum  $v_D$  değerine kadar değişen frekanslara sahip bağlı osilatörlerden oluşan bir sistemi dikkate alarak ısı miktarı için daha genel formül oluşturdu.



Şekil 6. Elmasın molar ısı kapasitesinin T'ye göre değişmesi, ikincisi Einstein sıcaklığının birimleri cinsinden  $T_E = \theta_E = \frac{hv_E}{k_B}$ . Sürekli çizgi Einstein'ın yaklaşımının sonucudur (Kittel, 1966).

#### 3.2. Katıların Isı Miktarı İçin Debye Modeli

Doğru dağılım bağıntısını kullanırsak, Brillouin bölgesi üzerinden integral alarak g ( $\omega$ ) elde ederiz ve Brillouin bölgesinde izin verilen k değerlerinin sayısının kristaldeki birim hücre sayısı olduğunu biliyoruz, bu yüzden otomatik olarak doğru sayıda serbestlik derecesi elde ederiz. Debye modelinde, bir  $\omega_D$  frekansı tanımlayın ve bu durumda parçacık sayısını:

$$N = \int_{0}^{\omega_{D}} g(\omega) d\omega$$
 (2.3.1)

şeklinde yazarız. Burada N, kristaldeki birim hücrelerin sayısıdır ve  $g(\omega)$  birim aralıktaki fonon yoğunluğudur. Bu durumda

kristalde tüm hücrelerdeki atomların toplam enerjisini aşağıdaki gibi yazarız:

$$E = \frac{3V}{(2\pi)^3} \int_0^{\omega_D} \frac{\hbar\omega(q)}{e^{\hbar\omega/k_B T} - 1} dq$$
(2.3.2)

(2.3.2) formülü üzerinde gereken işlemler yapıldıktan sonra aşağıdaki gibi yazarız:

$$E = \frac{3V\hbar}{2\pi^{3}\upsilon^{3}} \int_{0}^{\omega_{\max}} \frac{\omega^{3}}{e^{\hbar\omega/k_{B}T} - 1} d\omega . \qquad (2.3.3)$$

(2.3.3) formülünde  $x = \frac{h\omega}{k_B T}$  değişenine geçirsek:

$$E = \frac{3Vk_BT}{2\pi^2} \left(\frac{k_BT}{\hbar\nu}\right)^3 \int_{0}^{x_{\text{max}}} \frac{x^3}{e^x - 1} dx$$
(2.3.4)

elde ederiz. Burada  $x_{\text{max}} = \frac{h\omega_{\text{max}}}{k_B}$ . Denklemde  $\theta_D = \frac{h\omega_{\text{max}}}{k_B}$ Debye sıcaklığını tanımlarsak (2.3.4) formülünü aşağıdaki gibi yazarız:

$$E = 3k_B N_A D_3 \left(\frac{\theta_D}{T}\right). \tag{2.3.5}$$

(2.3.5) formülünde  $D_3\left(\frac{\theta_D}{T}\right)$  Debye fonksiyonu olup aşağıdaki gibi tanımlanır:

23 | YARIİLETKENLERİN SABİT HACİMDE VE BASINÇTA ISI KAPASİTELERİNİN EİNSTEİN-DEBYE YAKLAŞIMI KULLANILARAK İNCELENMESİ

$$D_3\left(\frac{\theta_D}{T}\right) = 3\left(\frac{T}{\theta_D}\right)^3 \int_0^{\frac{\theta_D}{T}} \frac{x^3}{e^x - 1} dx \quad .$$
(2.3.6)

Debye yaklaşımından alınan toplam enerji için (2.3.5) formülünü kullanarak sıcaklığın tüm değerlerinde geçerli olan ısı kapasitesini hesaplayabiliriz:

$$C_{V} = \frac{\partial E}{\partial T} = 3k_{B}N_{A}L_{V}\left(\frac{\theta_{D}}{T}\right).$$
(2.3.7)

Burada  $L_{V}\left(\frac{\theta_{D}}{T}\right)$  fonksiyonu aşağıdaki gibi tanımlanır:

$$L_{V}\left(\frac{\theta_{D}}{T}\right) = 4D_{3}\left(\frac{\theta_{D}}{T}\right) - 3\left(\frac{\theta_{D}}{T}\right)\frac{1}{e^{\theta_{D}/T} - 1} \quad .$$
(2.3.8)

 $L_V\left(rac{ heta_D}{T}
ight)$  fonksiyonun integral şeklini ise aşağıdaki gibi

yazabiliriz:

$$L_{V}\left(\frac{\theta_{D}}{T}\right) = 3\left(\frac{T}{\theta_{D}}\right)^{3} \int_{0}^{\frac{\theta_{D}}{T}} \frac{x^{4}e^{x}}{(e^{x}-1)^{2}} dx \quad .$$
(2.3.9)

Böylelikle sıcaklığın tüm aralığı için Debye yaklaşımı kullanılarak  $C_v$  ısı kapasitesi hesaplanabilmektedir.



Şekil 7. Birkaç katı maddenin molar 151 kapasitesi T'ye karşı, ikincisi Debye sıcaklığı birimleri cinsinden  $T_D = \theta_D = \frac{hv_D}{k_P}$ . Sürekli eğri, Debye

tarafından öngörülen yaklaşımın sonucudur (Kittel, 1966).



Şekil 8. Gümüş için Debye ve Einstein yaklaşımlarının karşılaştırmalı sonuçları (Kittel, 1966).

#### 25 | YARIİLETKENLERİN SABİT HACİMDE VE BASINÇTA ISI KAPASİTELERİNİN EİNSTEİN-DEBYE YAKLAŞIMI KULLANILARAK İNCELENMESİ

Şekil 7'de Debye yaklaşımından alınan sonuçlarla deneysel sonuçlar karşılaştırmalı olarak verilmiştir. İncelemeler göstermektedir ki Debye yaklaşımı tüm sıcaklık aralığında uyumlu sonuç vermektedir. Şekil 8'de ise gümüş için Debye ve Einstein yaklaşımlarından alınan karşılaştırmalı sonuçlar verilmiştir. Buradan görülüyor ki özellikle küçük sıcaklık değerlerinde Einstein yöntemi yetersiz kalmaktadır.

#### 4. BULGULAR 4.1. Katıların Isı Miktarı İçin Einstein-Debye Modeli

Bir maddenin verilen dış koşullar altında ( $x \equiv P, V$  ile gösterilir) öz 1sısı  $C_x = \left(\frac{dQ}{dT}\right)_x$ , yani maddenin 1 gramının sıcaklığını 1°C artırmak için verilmesi gereken ısı miktarı olarak bilinir. Genelde, maddelerin 1sı kapasiteleri sabit basınçta  $(C_p)$  ve sabit hacimde  $(C_V)$  ölçülür. Deneyler katılarda olduğu gibi  $C_p$  verildiğinde, genel bir termodinamik ilişki vasıtasıyla  $C_V$  buluna bilinir:

$$C_{P}(T) - C_{V}(T) = \frac{A_{0}T}{T_{m}} \left(C_{P}(T)\right)^{2}$$
(3.1.1)

burada  $T_m$  erime sıcaklığı,  $A_0$  sabit olup  $A_0 = 5.12 \times 10^{-3} JK^{-1} mol^{-1}$ değerini alır. Teorik olarak katı maddenin sıcaklığa bağlı olarak genişlemesini ve bunun sonucunda elastik özelliklerde meydana gelen değişiklikleri göz ardı etmek normaldir; bu ihmal sadece küçük hatalar içerir. Genel olarak, ısı kapasitelerini incelemek için verilen teoriler iki ayrı bölüme ayrılır:

- 3R gram molekülü başına sabit bir ısı kapasitesini (Dulong- Petit yasası) veren klasik teori (burada R, gram molekülü başına gaz sabiti)
- Kuantum teorisi: İlk örnek Einstein (1907) ve Debye (1912) daha sonra ise Cankurtaran ve Askerov (1996) tarafından daha eksiksiz bir biçimde verilmiştir.

Klasik teoriye göre, katılar stabil olduğu için, ısı enerjisi sadece düğüm noktalarındaki bir dizi titreşimli parçacığın enerjisidir ve ortalama değer ise  $3N_Ak_BT$  eşit olup bu Dulong-Petit yasası olarak bilinir ( $N_A$  Avagadro sayısı,  $k_B$  Boltzmann sabit ve T ise mutlak sıcaklıktır). Burada  $C_V(T) = 3N_A k_B$ 'dir ve öz ısı sıcaklıktan bağımsız olur. Örneğin, Dulong- Petit yasasına göre sabit basınçta atomik ısı kapasitesi, çok sayıda maddeler için 6.2' ye eşittir. Yapılan deneysel çalışmalar sıcaklığın küçük değerlerinde ısı kapasitelerinin değiştiğini gösterdi. Yani küçük sıcaklıklarda Dulong- Petit yasası geçerli olmadığı görüldü. Bu problemin çözümü Einstein (1907) tarafından Planck'ın yeni kuantum teorisi, katı maddeyi oluşturan parçacıkların hareketine uygulanan temel bir makalesinde verildi. Bu yaklaşımda, katıdaki bir parçacığın sabit bir frekansla titreştiği varsayılarak ve N sayıda parçacıklar için ısı kapasitesi aşağıdaki gibi alınır (Askerov ve Cankurtaran, 1994):

$$C_{V}(T) = 3sNk_{0} \left(\frac{\theta_{E}}{T}\right)^{2} \frac{e^{\frac{\theta_{E}}{T}}}{e^{\frac{\theta_{E}}{T}} - 1}$$
(3.1.2)

burada  $\theta_E = \frac{\hbar \omega_0}{k_0}$  Einstein sıcaklığıdır. Einstein yaklaşımına göre

temel zorluklar şimdi çözülmüş olmasına rağmen, parçacıkların hareketinin ayrıntıları genel şekilde dikkate alınmadığından deneyle çok uyumlu bir sonuç beklenemezdi. Özellikle, Einstein'ın öz ısı formülü düşük sıcaklıklarda oldukça tatmin edici sonuçlar vermedi. Einstein teorisinin de belirttiği gibi, katının titreşim frekansları hakkında daha fazla bilgi edinmek önemlidir. Dinamik olarak kararlı bir sistemin parçacıklarının hareketini, sistemin bağımsız salınımlarının süper pozisyonu olarak düşünülür. Teorinin yetersizliklerinin giderilmesi için bir sonraki adım Debye (1912) (McCombie, 1971) tarafından gerçekleştirilmiştir. Debye ortaya çıkan yetersizliği dikkate alarak tüm sıcaklık aralığında katıların ısı kapasitesi için aşağıdaki formülü vermiştir (Schwartz, 2014; Kittel, 1966):

$$C_V = 3k_0 N_A L(T,\theta) \tag{3.1.3}$$

$$L(T,\theta) = (n+1)D_n\left(1,\frac{\theta_D}{T}\right) - n\left(\frac{\theta_D}{T}\right)\frac{1}{e^{\theta_D/T} - 1}$$
(3.1.4)

burada  $\theta_D$  Debye sıcaklığıdır ve katılar için n=3-5 değerleri arasında değişir. Denklem (3.1.4)'de  $D\left(\frac{\theta_D}{T}\right)$  Debye fonksiyonu olup genel şekilde aşağıdaki gibi tanımlanır (Schwartz, 2014; Kittel, 1966):

$$D_n(\beta, \mathbf{x}) = \frac{n}{x^n} \int_0^x \frac{t^n}{(e^t - 1)^\beta} dt \,.$$
(3.1.5)

Literatürde Debye fonksiyonu üzerine çoklu sayıda çalışmalar vardır. Son zamanlarda yapılan (Guseinov ve Mamedov, 2007) çalışmasında n boyutlu Debye fonksiyonu için daha hassas sonuçlar veren formül oluşturulmuştur:

$$D_n(\beta, x) = \frac{n}{x^n} \lim_{N \to \infty} \sum_{i=0}^N (-1)^i F_i(-\beta) \frac{\gamma(n+1, (i+\beta)x)}{(i+\beta)^{n+1}}$$
(3.1.6)

burada  $F_i(-\beta)$  binomial katsayılardır (Gradshtein ve Ryzhik, 1971).

$$F_m(n) = \begin{cases} \frac{n(n-1)\dots(n-m+1)}{m!} & \text{for integer } n\\ \frac{(-1)^m \Gamma(m-n)}{m! \Gamma(-n)} & \text{for noninteger } n \end{cases}$$
(3.1.7)

ve  $\gamma(n+1,(i+\beta)x)$  ise tam olmayan gamma fonksiyonu olup

$$\gamma(\alpha, y) = \int_{0}^{y} t^{\alpha - 1} e^{-t} dt$$
(3.1.8)

Şeklinde tanımlanır. Debye yaklaşımından alınan sonuçların deneysel sonuçlarla uyum içinde olduğu görüldü. Böylece katıların öz ısısının sıcaklığa göre değişiminin doğası teorik olarak açıklanmış oldu. Bu yaklaşım kullanılarak literatürde çok sayıda katı için öz ısısının sıcaklığa göre değişimi incelenerek teknolojiye uygulanmasına büyük katkı sağlanmıştır (Neumann, 2004; Grimvall, 1999; Pyda ve ark., 1998; Gaur ve ark., 1978; Lu ve ark., 2005; Magomedov, 2002; Avsec ve Marcic, 2002; Eymet ve ark., 2002; Windsor ve Sinclair, 1976; Abu-Eishah, 2001; Pathak ve Pandya, 1975).

Son olarak Askerov ve Cankurtaran (1996) çalışmasında Einstein ve Debye yöntemlerini birleştirerek katıların termodinamik özelliklerini incelemek için daha geniş kapsamlı yaklaşım olan Einstein-Debye yaklaşımını önerdiler. Bu yaklaşıma göre öz ısı kapasitesi aşağıdaki formüle göre hesaplanabilir:

$$C_V = 3N_A k_B M\left(\frac{\theta_D}{T}, \frac{\theta_E}{T}\right) , \qquad (3.1.9)$$

burada  $\theta_E$  Einstein sıcaklığıdır ve  $M\left(\frac{\theta_D}{T}, \frac{\theta_E}{T}\right)$  fonksiyonu ise aşağıdaki gibi tanımlanır:

$$M\left(\frac{\theta_D}{T}, \frac{\theta_E}{T}\right) = L_V\left(\frac{\theta_D}{T}\right) + (s-1)A\left(\frac{\theta_E}{T}\right), \qquad (3.1.10)$$

burada s düğüm noktasındaki atom sayısı ve  $L_v\left(\frac{\theta_D}{T}\right)$  ve  $A\left(\frac{\theta_E}{T}\right)$  fonksiyonları ise aşağıdaki gibi tanımlanır:

$$A\left(\frac{\theta_E}{T}\right) = \left(\frac{\theta_E}{T}\right)^2 \frac{e^{\frac{\theta_E}{T}}}{\left(e^{\frac{\theta_E}{T}} - 1\right)^2} = \left[\frac{\theta_E}{2T} \frac{1}{\sinh\left(\frac{\theta_E}{2T}\right)}\right]^2$$
(3.1.11)

ve

$$L_{V}\left(\frac{\theta_{D}}{T}\right) = (n+1)D_{n}\left(1,\frac{\theta_{D}}{T}\right) - \frac{\theta_{D}}{T}\frac{n}{e^{\frac{\theta_{D}}{T}}-1} \qquad (3.1.12)$$

İncelemelerden görülür ki, Einstein-Debye yaklaşımına göre yapılan hesaplama sonuçları deneysel verilerle daha çok uyum içerisindedir. Literatürde Einstein-Debye yaklaşımına göre katıların termodinamik özelliklerinin incelenmesi ile ilgili az sayıda çalışma vardır. Önerilen çalışmada Einstein- Debye yaklaşımı dikkate alınarak bazı yarıiletkenlerin ısı kapasiteleri sıcaklığın geniş aralığında incelenecektir. (3.1.3) ve (3.1.9) formüllerinden görüldüğü gibi öz ısının hassas hesaplanması Debye fonksiyonu için oluşturulan analitik formüllerden alınan sonuçlara bağlıdır. Einstein-Debye yaklaşımı için kaynak oluşturulan formüllerin (Cankurtaran ve Askerov, 1996), Einstein ve Debye yaklaşımlarına göre arzu edilen hassaslıkta sonuçlar verdiği yapılan çalışmalardan görülmektedir. Bu formüller dikkate burada Si, Ge, GaAs, InP, InAs ve ZnO alınarak variiletkenleri için sabit hacimde ve sabit basıncta ısı kapasiteleri  $C_{v}$  ve  $C_{p}$  hesaplanmıştır.

### **4.2**. Si, Ge ve GaAs Yarıiletkenlerin $C_V$ ve $C_P$ Isı Kapasitelerinin Einstein-Debye Yaklaşımına Göre Hesaplanması

Si yarıiletkeni yer yüzeyinde bol miktarda bulunan elementlerdendir. Yarıiletken özelliğine sahip olduğundan diyot, transistör ve kayıt özelliğine sahip elektronik malzeme olarak bilgisayar ve elektronik teknolojinin önemli bir kaynağı olmuştur. Özellikle bilgisayar yapımında yaygın olarak kullanılmaktadır. Ayrıca germanyum transistörler ve diyotlar uzun ömürlü olup düşük güç kaynakları olarak kullanılmaktadır. GaAs ise yüksek sıcaklıklarda yüksek verim göstermesinden dolayı cep telefonlarında güneş pillerinde yaygın olarak kullanılmaktadır.

Hesaplamalarımızda Mathematica 7.0 programlama dili formülleri (3.1.3)-(3.1.10)kullanılarak yardımıyla Si, Ge ve GaAs yarıiletkenlerinin  $C_{v}(T)$  ve  $C_{p}(T)$ öz 1S1 kapasitelerinin sıcaklığa göre değişimi Einstein-Debye yaklaşımı kullanılarak elde edilmiştir. Hesaplama sonuçları Cizelge 1-3 şeklinde verilmiştir. Ayrıca  $C_{v}(T)$  ve  $C_{p}(T)$  1sı kapasitelerinin değisiminin karsılastırmalı sıcaklığa göre sonucları n = 2.9, 3.0 ve 3.1 değerlerinde Şekil 1-3 de verilmiştir.

**Tablo 1.** Ge yarıiletkeninin  $C_v(T)$  sabit hacimde 151 kapasitesinin *n* farklı değerlerinde sıcaklığa göre değişmesi ( $\theta_D = 374K$ ,  $T_m = 1211K$ ) (Boussaid ve ark., 2019).

| Т   | <i>n</i> = 2.9 | <i>n</i> = 3.0 | n = 3.1 |
|-----|----------------|----------------|---------|
| 200 | 21.1235        | 21.073         | 21.0256 |
| 220 | 21.7231        | 21.681         | 21.6397 |
| 240 | 22.1956        | 22.159         | 22.1241 |
| 260 | 22.5737        | 22.542         | 22.5117 |
| 280 | 22.8804        | 22.853         | 22.8261 |
| 300 | 23.1322        | 23.108         | 23.0844 |

| 320  | 23.3412 | 23.320 | 23.2988 |
|------|---------|--------|---------|
| 340  | 23.5165 | 23.497 | 23.4787 |
| 360  | 23.6649 | 23.648 | 23.6309 |
| 380  | 23.7915 | 23.776 | 23.7609 |
| 400  | 23.9004 | 23.886 | 23.8726 |
| 420  | 23.9947 | 23.982 | 23.9694 |
| 440  | 24.0768 | 24.065 | 24.0537 |
| 460  | 24.1488 | 24.138 | 24.1276 |
| 480  | 24.2122 | 24.202 | 24.1927 |
| 500  | 24.2684 | 24.259 | 24.2504 |
| 520  | 24.3183 | 24.310 | 24.3017 |
| 540  | 24.363  | 24.355 | 24.3476 |
| 560  | 24.403  | 24.396 | 24.3887 |
| 580  | 24.4391 | 24.432 | 24.4257 |
| 600  | 24.4716 | 24.465 | 24.4591 |
| 620  | 24.5011 | 24.495 | 24.4894 |
| 640  | 24.5279 | 24.522 | 24.517  |
| 660  | 24.5524 | 24.547 | 24.5421 |
| 680  | 24.5747 | 24.570 | 24.5651 |
| 700  | 24.5952 | 24.591 | 24.5861 |
| 720  | 24.614  | 24.610 | 24.6055 |
| 740  | 24.6313 | 24.627 | 24.6233 |
| 760  | 24.6473 | 24.643 | 24.6397 |
| 780  | 24.6621 | 24.658 | 24.6549 |
| 800  | 24.6757 | 24.672 | 24.669  |
| 820  | 24.6884 | 24.685 | 24.682  |
| 840  | 24.7002 | 24.697 | 24.6942 |
| 860  | 24.7112 | 24.708 | 24.7055 |
| 880  | 24.7214 | 24.719 | 24.716  |
| 900  | 24.731  | 24.728 | 24.7259 |
| 920  | 24.7399 | 24.738 | 24.7351 |
| 940  | 24.7483 | 24.746 | 24.7437 |
| 960  | 24.7561 | 24.754 | 24.7518 |
| 980  | 24.7635 | 24.761 | 24.7594 |
| 1000 | 24.7704 | 24.769 | 24.7666 |

33 | YARIİLETKENLERİN SABİT HACİMDE VE BASINÇTA ISI KAPASİTELERİNİN EİNSTEİN-DEBYE YAKLAŞIMI KULLANILARAK İNCELENMESİ

| 1020 | 24.7769 | 24.775 | 24.7733 |
|------|---------|--------|---------|
| 1040 | 24.7831 | 24.781 | 24.7797 |
| 1060 | 24.7888 | 24.787 | 24.7856 |
| 1080 | 24.7943 | 24.793 | 24.7913 |
| 1100 | 24.7994 | 24.798 | 24.7966 |
| 1120 | 24.8043 | 24.803 | 24.8017 |
| 1140 | 24.8089 | 24.808 | 24.8064 |
| 1160 | 24.8132 | 24.812 | 24.811  |
| 1180 | 24.8174 | 24.816 | 24.8153 |
| 1200 | 24.8213 | 24.820 | 24.8193 |



Şekil 9. Ge yarıiletkeninin  $C_v(T)$  sabit hacimde ısı kapasitesinin *n* farklı değerlerinde sıcaklığa göre değişmesi (siyah çizgi n = 2.9, kırmızı çizgi n = 3.0, mavi çizgi ise n = 3.1 değerlerine karşılık gelir).
**Tablo 2.** Ge yarıiletkeninin  $C_p(T)$  sabit basınçta ısı kapasitesinin *n* farklı değerlerinde sıcaklığa göre değişmesi ( $\theta_D = 374K, T_m = 1211K$ )(Boussaid ve ark., 2019).

| Т   | <i>n</i> = 2.9 | <i>n</i> = 3.0 | <i>n</i> = 3.1 |
|-----|----------------|----------------|----------------|
| 200 | 21.5133        | 21.461         | 21.4117        |
| 220 | 22.1788        | 22.134         | 22.0919        |
| 240 | 22.7172        | 22.679         | 22.6422        |
| 260 | 23.1611        | 23.128         | 23.0957        |
| 280 | 23.5334        | 23.504         | 23.476         |
| 300 | 23.8509        | 23.825         | 23.8           |
| 320 | 24.1256        | 24.102         | 24.0803        |
| 340 | 24.3667        | 24.346         | 24.326         |
| 360 | 24.581         | 24.562         | 24.5443        |
| 380 | 24.7737        | 24.757         | 24.7404        |
| 400 | 24.949         | 24.934         | 24.9186        |
| 420 | 25.1099        | 25.096         | 25.0822        |
| 440 | 25.2591        | 25.246         | 25.2336        |
| 460 | 25.3985        | 25.387         | 25.375         |
| 480 | 25.5298        | 25.519         | 25.508         |
| 500 | 25.6542        | 25.644         | 25.6341        |
| 520 | 25.773         | 25.763         | 25.7543        |
| 540 | 25.887         | 25.878         | 25.8695        |
| 560 | 25.9969        | 25.989         | 25.9806        |
| 580 | 26.1034        | 26.096         | 26.0881        |
| 600 | 26.2071        | 26.200         | 26.1927        |
| 620 | 26.3083        | 26.301         | 26.2948        |
| 640 | 26.4075        | 26.401         | 26.3948        |
| 660 | 26.505         | 26.499         | 26.493         |
| 680 | 26.6012        | 26.595         | 26.5898        |
| 700 | 26.6962        | 26.691         | 26.6854        |
| 720 | 26.7903        | 26.785         | 26.7801        |
| 740 | 26.8837        | 26.879         | 26.874         |
| 760 | 26.9765        | 26.972         | 26.9674        |
| 780 | 27.069         | 27.065         | 27.0603        |

| 800  | 27.1612 | 27.157 | 27.153  |
|------|---------|--------|---------|
| 820  | 27.2534 | 27.249 | 27.2455 |
| 840  | 27.3455 | 27.342 | 27.3381 |
| 860  | 27.4378 | 27.434 | 27.4307 |
| 880  | 27.5303 | 27.527 | 27.5235 |
| 900  | 27.6231 | 27.620 | 27.6166 |
| 920  | 27.7163 | 27.713 | 27.7101 |
| 940  | 27.8099 | 27.807 | 27.8041 |
| 960  | 27.9041 | 27.901 | 27.8986 |
| 980  | 27.999  | 27.996 | 27.9937 |
| 1000 | 28.0945 | 28.092 | 28.0895 |
| 1020 | 28.1907 | 28.188 | 28.186  |
| 1040 | 28.2878 | 28.286 | 28.2833 |
| 1060 | 28.3858 | 28.384 | 28.3815 |
| 1080 | 28.4847 | 28.483 | 28.4806 |
| 1100 | 28.5846 | 28.583 | 28.5808 |
| 1120 | 28.6855 | 28.684 | 28.6819 |
| 1140 | 28.7876 | 28.786 | 28.7842 |
| 1160 | 28.8908 | 28.889 | 28.8877 |
| 1180 | 28.9953 | 28.994 | 28.9924 |
| 1200 | 29.1011 | 29.100 | 29.0984 |



Şekil 10. *Ge* yarıiletkeninin  $C_p(T)$  sabit basınçta ısı kapasitesinin *n* farklı değerlerinde sıcaklığa göre değişmesi (siyah çizgi n = 2.9, kırmızı çizgi n = 3.0, mavi çizgi ise n = 3.1 değerlerine karşılık gelir).

**Tablo 3.** Si yarıiletkeninin  $C_V(T)$  sabit hacimde ısı kapasitesinin *n* farklı değerlerinde sıcaklığa göre değişmesi ( $\theta_D = 640K, T_m = 1687K$ )(Boussaid ve ark., 2019).

| Т   | <i>n</i> = 2.9 | <i>n</i> = 3.0 | <i>n</i> = 3.1 |
|-----|----------------|----------------|----------------|
| 200 | 15.8128        | 15.704         | 15.6006        |
| 220 | 17.0061        | 16.909         | 16.8169        |
| 240 | 18.0031        | 17.917         | 17.8344        |
| 260 | 18.8386        | 18.762         | 18.6879        |
| 280 | 19.542         | 19.473         | 19.407         |
| 300 | 20.1374        | 20.075         | 20.0161        |
| 320 | 20.6444        | 20.589         | 20.535         |
| 340 | 21.0787        | 21.028         | 20.9797        |
| 360 | 21.4528        | 21.407         | 21.3629        |
| 380 | 21.777         | 21.735         | 21.695         |
| 400 | 22.0594        | 22.021         | 21.9844        |
| 420 | 22.3067        | 22.272         | 22.2379        |

| 440  | 22.5242 | 22.492 | 22.4609 |
|------|---------|--------|---------|
| 460  | 22.7166 | 22.687 | 22.6581 |
| 480  | 22.8873 | 22.860 | 22.8332 |
| 500  | 23.0395 | 23.014 | 22.9893 |
| 520  | 23.1757 | 23.152 | 23.129  |
| 540  | 23.298  | 23.276 | 23.2545 |
| 560  | 23.4083 | 23.388 | 23.3676 |
| 580  | 23.5079 | 23.489 | 23.4699 |
| 600  | 23.5983 | 23.580 | 23.5626 |
| 620  | 23.6806 | 23.663 | 23.647  |
| 640  | 23.7556 | 23.739 | 23.724  |
| 660  | 23.8241 | 23.809 | 23.7944 |
| 680  | 23.887  | 23.873 | 23.8589 |
| 700  | 23.9448 | 23.931 | 23.9182 |
| 720  | 23.998  | 23.985 | 23.9728 |
| 740  | 24.047  | 24.035 | 24.0232 |
| 760  | 24.0924 | 24.081 | 24.0698 |
| 780  | 24.1345 | 24.123 | 24.1129 |
| 800  | 24.1735 | 24.163 | 24.153  |
| 820  | 24.2098 | 24.200 | 24.1903 |
| 840  | 24.2436 | 24.234 | 24.225  |
| 860  | 24.2751 | 24.266 | 24.2573 |
| 880  | 24.3046 | 24.296 | 24.2876 |
| 900  | 24.3321 | 24.324 | 24.3159 |
| 920  | 24.3579 | 24.350 | 24.3424 |
| 940  | 24.3822 | 24.375 | 24.3673 |
| 960  | 24.4049 | 24.398 | 24.3906 |
| 980  | 24.4263 | 24.419 | 24.4126 |
| 1000 | 24.4465 | 24.440 | 24.4333 |
| 1020 | 24.4654 | 24.459 | 24.4528 |
| 1040 | 24.4834 | 24.477 | 24.4712 |
| 1060 | 24.5003 | 24.494 | 24.4886 |
| 1080 | 24.5163 | 24.511 | 24.5051 |
| 1100 | 24.5315 | 24.526 | 24.5207 |
| 1120 | 24.5459 | 24.541 | 24.5354 |

| 1140 | 24.5595 | 24.554 | 24.5494 |
|------|---------|--------|---------|
| 1160 | 24.5724 | 24.568 | 24.5627 |
| 1180 | 24.5847 | 24.580 | 24.5754 |
| 1200 | 24.5964 | 24.592 | 24.5874 |



Şekil 11. Si yarıiletkeninin  $C_v(T)$  sabit hacimde ısı kapasitesinin *n* farklı değerlerinde sıcaklığa göre değişmesi (siyah çizgi n = 2.9, kırmızı çizgi n = 3.0, mavi çizgi ise n = 3.1 değerlerine karşılık gelir).

**Tablo 4.** Si yarıiletkeninin  $C_p(T)$  sabit basınçta ısı kapasitesinin *n* farklı değerlerinde sıcaklığa göre değişmesi ( $\theta_D = 640K, T_m = 1687K$ )(Boussaid ve ark., 2019).

| Т   | <i>n</i> = 2.9 | <i>n</i> = 3.0 | <i>n</i> = 3.1 |
|-----|----------------|----------------|----------------|
| 200 | 15.9669        | 15.856         | 15.7506        |
| 220 | 17.2029        | 17.104         | 17.0093        |
| 240 | 18.2446        | 18.156         | 18.0713        |
| 260 | 19.1261        | 19.047         | 18.9708        |
| 280 | 19.8764        | 19.805         | 19.7367        |

| 300 | 20.5193 | 20.455 | 20.3933 |
|-----|---------|--------|---------|
| 320 | 21.074  | 21.016 | 20.96   |
| 340 | 21.5563 | 21.503 | 21.4527 |
| 360 | 21.9786 | 21.930 | 21.8841 |
| 380 | 22.3509 | 22.307 | 22.2645 |
| 400 | 22.6815 | 22.641 | 22.6022 |
| 420 | 22.977  | 22.940 | 22.904  |
| 440 | 23.2428 | 23.208 | 23.1754 |
| 460 | 23.4835 | 23.452 | 23.4209 |
| 480 | 23.7025 | 23.673 | 23.6445 |
| 500 | 23.9031 | 23.876 | 23.849  |
| 520 | 24.0878 | 24.062 | 24.0373 |
| 540 | 24.2587 | 24.235 | 24.2115 |
| 560 | 24.4176 | 24.395 | 24.3733 |
| 580 | 24.5661 | 24.545 | 24.5245 |
| 600 | 24.7055 | 24.685 | 24.6662 |
| 620 | 24.8368 | 24.818 | 24.7998 |
| 640 | 24.961  | 24.943 | 24.9261 |
| 660 | 25.0791 | 25.062 | 25.046  |
| 680 | 25.1916 | 25.176 | 25.1602 |
| 700 | 25.2992 | 25.284 | 25.2695 |
| 720 | 25.4025 | 25.388 | 25.3742 |
| 740 | 25.5019 | 25.488 | 25.475  |
| 760 | 25.5979 | 25.585 | 25.5722 |
| 780 | 25.6908 | 25.678 | 25.6663 |
| 800 | 25.781  | 25.769 | 25.7576 |
| 820 | 25.8687 | 25.857 | 25.8463 |
| 840 | 25.9542 | 25.943 | 25.9327 |
| 860 | 26.0377 | 26.027 | 26.0172 |
| 880 | 26.1195 | 26.109 | 26.0998 |
| 900 | 26.1998 | 26.190 | 26.1808 |
| 920 | 26.2786 | 26.269 | 26.2604 |
| 940 | 26.3562 | 26.347 | 26.3386 |
| 960 | 26.4326 | 26.424 | 26.4157 |
| 980 | 26.5081 | 26.500 | 26.4918 |

| 1000 | 26.5827 | 26.575 | 26.567  |
|------|---------|--------|---------|
| 1020 | 26.6566 | 26.649 | 26.6414 |
| 1040 | 26.7297 | 26.722 | 26.7151 |
| 1060 | 26.8023 | 26.795 | 26.7882 |
| 1080 | 26.8744 | 26.867 | 26.8608 |
| 1100 | 26.9461 | 26.939 | 26.9329 |
| 1120 | 27.0174 | 27.011 | 27.0046 |
| 1140 | 27.0884 | 27.082 | 27.076  |
| 1160 | 27.1591 | 27.153 | 27.1472 |
| 1180 | 27.2297 | 27.224 | 27.2181 |
| 1200 | 27.3002 | 27.294 | 27.2889 |



Şekil 12. Si yarıiletkeninin  $C_p(T)$  sabit basınçta ısı kapasitesinin *n* farklı değerlerinde sıcaklığa göre değişmesi (siyah çizgi n = 2.9, kırmızı çizgi n = 3.0, mavi çizgi ise n = 3.1 değerlerine karşılık gelir).

Tablo 5. GaAs yarıiletkeninin  $C_v(T)$  sabit hacimde 151 kapasitesinin nfarklıdeğerlerindesıcaklığagöredeğişmesi $(\theta_D = 360K, \theta_E = 480K, T_m = 1513K)$  (Boussaid ve ark., 2019).

| Т   | <i>n</i> = 2.9 | <i>n</i> = 3.0 | <i>n</i> = 3.1 |
|-----|----------------|----------------|----------------|
| 200 | 37.1387        | 37.092         | 37.0468        |
| 220 | 38.9616        | 38.922         | 38.8836        |
| 240 | 40.4429        | 40.409         | 40.376         |
| 260 | 41.657         | 41.627         | 41.5991        |
| 280 | 42.661         | 42.635         | 42.6104        |
| 300 | 43.4985        | 43.476         | 43.454         |
| 320 | 44.203         | 44.183         | 44.1635        |
| 340 | 44.8003        | 44.782         | 44.7651        |
| 360 | 45.3104        | 45.294         | 45.2788        |
| 380 | 45.7491        | 45.735         | 45.7207        |
| 400 | 46.1289        | 46.116         | 46.1031        |
| 420 | 46.4596        | 46.448         | 46.4362        |
| 440 | 46.7492        | 46.738         | 46.7278        |
| 460 | 47.0042        | 46.994         | 46.9845        |
| 480 | 47.2297        | 47.220         | 47.2116        |
| 500 | 47.43          | 47.422         | 47.4134        |
| 520 | 47.6088        | 47.601         | 47.5934        |
| 540 | 47.7689        | 47.762         | 47.7547        |
| 560 | 47.9129        | 47.906         | 47.8997        |
| 580 | 48.0428        | 48.037         | 48.0305        |
| 600 | 48.1604        | 48.155         | 48.1489        |
| 620 | 48.2672        | 48.262         | 48.2564        |
| 640 | 48.3645        | 48.359         | 48.3544        |
| 660 | 48.4532        | 48.448         | 48.4438        |
| 680 | 48.5345        | 48.530         | 48.5256        |
| 700 | 48.6091        | 48.605         | 48.6008        |
| 720 | 48.6777        | 48.674         | 48.6699        |
| 740 | 48.7409        | 48.737         | 48.7336        |
| 760 | 48.7994        | 48.796         | 48.7924        |
| 780 | 48.8534        | 48.850         | 48.8469        |

| 800  | 48.9036 | 48.900 | 48.8974 |
|------|---------|--------|---------|
| 820  | 48.9501 | 48.947 | 48.9443 |
| 840  | 48.9935 | 48.991 | 48.988  |
| 860  | 49.0339 | 49.031 | 49.0287 |
| 880  | 49.0716 | 49.069 | 49.0667 |
| 900  | 49.1068 | 49.105 | 49.1022 |
| 920  | 49.1398 | 49.138 | 49.1355 |
| 940  | 49.1708 | 49.169 | 49.1667 |
| 960  | 49.1998 | 49.198 | 49.1959 |
| 980  | 49.2271 | 49.225 | 49.2235 |
| 1000 | 49.2528 | 49.251 | 49.2494 |
| 1020 | 49.277  | 49.275 | 49.2738 |
| 1040 | 49.2998 | 49.298 | 49.2968 |
| 1060 | 49.3213 | 49.320 | 49.3185 |
| 1080 | 49.3417 | 49.340 | 49.3391 |
| 1100 | 49.3609 | 49.360 | 49.3585 |
| 1120 | 49.3792 | 49.378 | 49.3769 |
| 1140 | 49.3965 | 49.395 | 49.3944 |
| 1160 | 49.4128 | 49.412 | 49.411  |
| 1180 | 49.4284 | 49.428 | 49.4267 |
| 1200 | 49.4432 | 49.442 | 49.4416 |



Şekil 13. *GaAs* yarıiletkeninin  $C_v(T)$  sabit hacimde ısı kapasitesinin *n* farklı değerlerinde sıcaklığa göre değişmesi (siyah çizgi n = 2.9, kırmızı çizgi n = 3.0, mavi çizgi ise n = 3.1 değerlerine karşılık gelir).

Tablo 6. GaAs yarıiletkeninin  $C_p$  (T) sabit basınçta ısı kapasitesinin nfarklıdeğerlerindesıcaklığagöredeğişmesi $(\theta_D = 360K, \theta_E = 480K, T_m = 1513K)$  (Boussaid ve ark., 2019).

| Т   | <i>n</i> = 2.9 | <i>n</i> = 3.0 | <i>n</i> = 3.1 | ((Boussaid |
|-----|----------------|----------------|----------------|------------|
|     |                |                |                | ve ark.,   |
|     |                |                |                | 2019)      |
| 200 | 38.1182        | 38.069         | 38.0214        |            |
| 220 | 40.1574        | 40.115         | 40.0745        |            |
| 240 | 41.8605        | 41.824         | 41.7887        |            |
| 260 | 43.3002        | 43.268         | 43.2375        |            |
| 280 | 44.5328        | 44.505         | 44.4776        |            |
| 300 | 45.6014        | 45.576         | 45.5523        | 46.71      |
| 320 | 46.5393        | 46.517         | 46.4954        |            |
| 340 | 47.3722        | 47.352         | 47.3327        |            |
| 360 | 48.1203        | 48.102         | 48.0845        | 47.86      |
| 380 | 48.7995        | 48.783         | 48.7669        |            |

| 400  | 49.4223 | 49.407 | 49.3925 |       |
|------|---------|--------|---------|-------|
| 420  | 49.9988 | 49.985 | 49.9715 |       |
| 440  | 50.5372 | 50.524 | 50.512  |       |
| 460  | 51.0442 | 51.032 | 51.0208 |       |
| 480  | 51.5251 | 51.514 | 51.5035 |       |
| 500  | 51.9846 | 51.974 | 51.9644 | 51.77 |
| 520  | 52.4264 | 52.417 | 52.4076 |       |
| 540  | 52.8538 | 52.845 | 52.8361 |       |
| 560  | 53.2693 | 53.261 | 53.2527 |       |
| 580  | 53.6755 | 53.668 | 53.6598 |       |
| 600  | 54.0742 | 54.067 | 54.0594 | 55.14 |
| 620  | 54.4673 | 54.460 | 54.4533 |       |
| 640  | 54.8562 | 54.850 | 54.843  |       |
| 660  | 55.2425 | 55.236 | 55.2299 |       |
| 680  | 55.6273 | 55.621 | 55.6154 |       |
| 700  | 56.0118 | 56.006 | 56.0004 | 57.18 |
| 720  | 56.3969 | 56.391 | 56.3861 |       |
| 740  | 56.7838 | 56.779 | 56.7735 |       |
| 760  | 57.1733 | 57.168 | 57.1635 |       |
| 780  | 57.5663 | 57.562 | 57.5569 |       |
| 800  | 57.9636 | 57.959 | 57.9547 |       |
| 820  | 58.3661 | 58.362 | 58.3575 |       |
| 840  | 58.7746 | 58.770 | 58.7664 |       |
| 860  | 59.1899 | 59.186 | 59.182  |       |
| 880  | 59.6129 | 59.609 | 59.6053 |       |
| 900  | 60.0443 | 60.041 | 60.037  |       |
| 920  | 60.4851 | 60.482 | 60.4782 |       |
| 940  | 60.9363 | 60.933 | 60.9296 |       |
| 960  | 61.3987 | 61.396 | 61.3923 |       |
| 980  | 61.8735 | 61.870 | 61.8673 |       |
| 1000 | 62.3617 | 62.359 | 62.3558 |       |
| 1020 | 62.8646 | 62.862 | 62.859  |       |
| 1040 | 63.3835 | 63.381 | 63.3781 |       |
| 1060 | 63.9198 | 63.917 | 63.9147 |       |
| 1080 | 64.4752 | 64.473 | 64.4704 |       |

45 | YARIİLETKENLERİN SABİT HACİMDE VE BASINÇTA ISI KAPASİTELERİNİN EİNSTEİN-DEBYE YAKLAŞIMI KULLANILARAK İNCELENMESİ

| 1100 | 65.0515 | 65.049 | 65.0469 |  |
|------|---------|--------|---------|--|
| 1120 | 65.6507 | 65.649 | 65.6463 |  |
| 1140 | 66.275  | 66.273 | 66.2709 |  |
| 1160 | 66.9272 | 66.925 | 66.9233 |  |
| 1180 | 67.6103 | 67.609 | 67.6066 |  |
| 1200 | 68.3277 | 68.326 | 68.3242 |  |



Şekil 14. GaAs yarıiletkeninin  $C_p(T)$  sabit basınçta ısı kapasitelerinin n farklı değerlerinde sıcaklığa göre değişmesi (siyah çizgi n = 2.9, kırmızı çizgi n = 3.0, mavi çizgi ise n = 3.1 değerlerine karşılık gelir).

# **4.3.** InP, InAs ve ZnO Yarıiletkenlerinin $C_v$ ve $C_p$ Isı Kapasitelerinin Einstein-Debye Yaklaşımına Göre Hesaplanması

*In* önemli metallerden biri olup değişik alaşımları ve bileşikleri teknolojinin farklı alanlarında yaygın kullanılmaktadır. Bunlara örnek olarak nükleer reaktörlerde kontrol çubuğu, fotoileticiler, kızılötesi detektörlerde, LCD ekranlar ve başka elektronik cihazlar gösterilebilir. *ZnO* doğal n tipi yarıiletken ve geniş bant aralığına sahip olduğundan ince film transistörlerinde ve ışık yayan diyotlarda yaygın olarak kullanılmaktadır.

Bir önceki bölümde olduğu gibi, Einstein-Debye yaklaşımından (3.1.3)-(3.1.10)formülleri edilen kullanılarak elde InP. InAs ve ZnO yarıiletkenlerinin  $C_{v}(T)$  ve  $C_{p}(T)$ 181 kapasitelerinin sıcaklığa göre değişimi Mathematica 7.0 programı yardımıyla hesaplandı. Hesaplama sonuçları Çizelge 1-3 de verilmiştir. Ayrıca  $C_{v}(T)$  ve  $C_{p}(T)$  1sı kapasitelerinin sıcaklığa değişiminin karşılaştırmalı sonuçları n = 2.9, 3.0 ve 3.1göre değerlerinde Sekil 1-3 de verilmistir.

Tablo 7. InPyariiletkeninin  $C_v(T)$  sabit hacimde 1s1 kapasitesinin n farklıdeğerlerindesıcaklığagöredeğişmesi $(\theta_D = 425K, \theta_E = 229.4K, T_m = 1333K)$  (Boussaid ve ark., 2019).

| Т   | n = 2.9 | n = 3.0 | n = 3.1 |
|-----|---------|---------|---------|
| 200 | 42.5493 | 42.4877 | 42.4287 |
| 220 | 43.6989 | 43.6462 | 43.5956 |
| 240 | 44.6054 | 44.5598 | 44.516  |
| 260 | 45.3309 | 45.2912 | 45.2531 |
| 280 | 45.9195 | 45.8847 | 45.8512 |
| 300 | 46.403  | 46.3722 | 46.3426 |
| 320 | 46.8045 | 46.7771 | 46.7508 |
| 340 | 47.1414 | 47.1169 | 47.0934 |
| 360 | 47.4266 | 47.4045 | 47.3834 |
| 380 | 47.67   | 47.6501 | 47.631  |
| 400 | 47.8794 | 47.8613 | 47.8439 |
| 420 | 48.0607 | 48.0442 | 48.0284 |
| 440 | 48.2187 | 48.2036 | 48.1891 |
| 460 | 48.3572 | 48.3433 | 48.33   |
| 480 | 48.4792 | 48.4665 | 48.4542 |
| 500 | 48.5873 | 48.5756 | 48.5642 |
| 520 | 48.6835 | 48.6726 | 48.6621 |

| 540  | 48.7694 | 48.7593 | 48.7496 |
|------|---------|---------|---------|
| 560  | 48.8465 | 48.8371 | 48.828  |
| 580  | 48.9159 | 48.9072 | 48.8987 |
| 600  | 48.9787 | 48.9704 | 48.9625 |
| 620  | 49.0355 | 49.0278 | 49.0204 |
| 640  | 49.0872 | 49.08   | 49.073  |
| 660  | 49.1343 | 49.1275 | 49.121  |
| 680  | 49.1774 | 49.171  | 49.1649 |
| 700  | 49.2169 | 49.2109 | 49.2051 |
| 720  | 49.2532 | 49.2475 | 49.242  |
| 740  | 49.2866 | 49.2812 | 49.2761 |
| 760  | 49.3174 | 49.3124 | 49.3075 |
| 780  | 49.3459 | 49.3412 | 49.3365 |
| 800  | 49.3724 | 49.3678 | 49.3634 |
| 820  | 49.3969 | 49.3926 | 49.3884 |
| 840  | 49.4197 | 49.4156 | 49.4117 |
| 860  | 49.4409 | 49.4371 | 49.4333 |
| 880  | 49.4608 | 49.4571 | 49.4535 |
| 900  | 49.4793 | 49.4758 | 49.4724 |
| 920  | 49.4966 | 49.4933 | 49.49   |
| 940  | 49.5128 | 49.5097 | 49.5066 |
| 960  | 49.5281 | 49.5251 | 49.5221 |
| 980  | 49.5424 | 49.5395 | 49.5367 |
| 1000 | 49.5558 | 49.5531 | 49.5504 |
| 1020 | 49.5685 | 49.5659 | 49.5634 |
| 1040 | 49.5804 | 49.578  | 49.5756 |
| 1060 | 49.5917 | 49.5894 | 49.5871 |
| 1080 | 49.6024 | 49.6002 | 49.598  |
| 1100 | 49.6124 | 49.6103 | 49.6082 |
| 1120 | 49.622  | 49.62   | 49.618  |
| 1140 | 49.631  | 49.6291 | 49.6272 |
| 1160 | 49.6395 | 49.6378 | 49.636  |
| 1180 | 49.6477 | 49.646  | 49.6443 |
| 1200 | 49.6554 | 49.6538 | 49.6522 |



Şekil 15. *InP* yarıiletkeninin  $C_V(T)$  sabit hacimde ısı kapasitesinin *n* farklı değerlerinde sıcaklığa göre değişmesi (siyah çizgi n = 2.9, kırmızı çizgi n = 3.0, mavi çizgi ise n = 3.1 değerlerine karşılık gelir).

**Tablo 8.** InP yarıiletkeninin  $C_p(T)$  sabit basınçta ısı kapasitesinin n farklıdeğerlerindesıcaklığagöredeğişmesi $(\theta_D = 425K, \theta_E = 229.4K, T_m = 1333K)$  (Boussaid ve ark., 2019).

| Т   | <i>n</i> = 2.9 | <i>n</i> = 3.0 | <i>n</i> = 3.1 | (Boussaid |
|-----|----------------|----------------|----------------|-----------|
|     |                |                |                | ve ark.,  |
|     |                |                |                | 2019)     |
| 200 | 44.0329        | 43.9669        | 43.9036        |           |
| 220 | 45.4366        | 45.3795        | 45.3247        |           |
| 240 | 46.5993        | 46.5495        | 46.5016        |           |
| 260 | 47.5832        | 47.5393        | 47.4972        |           |
| 280 | 48.4324        | 48.3935        | 48.3562        |           |
| 300 | 49.179         | 49.1443        | 49.1109        | 48.11     |
| 320 | 49.8465        | 49.8153        | 49.7854        |           |
| 340 | 50.4526        | 50.4244        | 50.3973        |           |
| 360 | 51.0105        | 50.9849        | 50.9603        | 50.21     |
| 380 | 51.5306        | 51.5072        | 51.4847        |           |

| 400  | 52.0208 | 51.9993 | 51.9787 | 53.46 |
|------|---------|---------|---------|-------|
| 420  | 52.4876 | 52.4678 | 52.4487 |       |
| 440  | 52.936  | 52.9176 | 52.9    |       |
| 460  | 53.3701 | 53.3531 | 53.3367 |       |
| 480  | 53.7935 | 53.7776 | 53.7623 |       |
| 500  | 54.2088 | 54.1939 | 54.1797 | 54.28 |
| 520  | 54.6185 | 54.6046 | 54.5912 |       |
| 540  | 55.0248 | 55.0117 | 54.9991 |       |
| 560  | 55.4293 | 55.4169 | 55.405  |       |
| 580  | 55.8336 | 55.8219 | 55.8107 |       |
| 600  | 56.2392 | 56.2281 | 56.2175 | 57.31 |
| 620  | 56.6474 | 56.6368 | 56.6267 |       |
| 640  | 57.0593 | 57.0493 | 57.0396 |       |
| 660  | 57.4761 | 57.4665 | 57.4573 |       |
| 680  | 57.8988 | 57.8897 | 57.8809 |       |
| 700  | 58.3286 | 58.3199 | 58.3115 |       |
| 720  | 58.7665 | 58.7581 | 58.75   |       |
| 740  | 59.2135 | 59.2054 | 59.1976 |       |
| 760  | 59.6706 | 59.6629 | 59.6554 |       |
| 780  | 60.1391 | 60.1316 | 60.1244 |       |
| 800  | 60.62   | 60.6128 | 60.6058 |       |
| 820  | 61.1147 | 61.1077 | 61.1009 |       |
| 840  | 61.6243 | 61.6175 | 61.611  |       |
| 860  | 62.1504 | 62.1438 | 62.1374 |       |
| 880  | 62.6944 | 62.6881 | 62.6819 |       |
| 900  | 63.2583 | 63.2521 | 63.246  |       |
| 920  | 63.8437 | 63.8377 | 63.8318 |       |
| 940  | 64.4529 | 64.447  | 64.4413 |       |
| 960  | 65.0884 | 65.0826 | 65.077  |       |
| 980  | 65.7528 | 65.7472 | 65.7417 |       |
| 1000 | 66.4495 | 66.4439 | 66.4385 |       |
| 1020 | 67.182  | 67.1766 | 67.1713 |       |
| 1040 | 67.9549 | 67.9496 | 67.9443 |       |
| 1060 | 68.7734 | 68.7682 | 68.7629 |       |
| 1080 | 69.6438 | 69.6386 | 69.6334 |       |

| 1100 | 70.5738 | 70.5687 | 70.5635 |  |
|------|---------|---------|---------|--|
| 1120 | 71.5732 | 71.5681 | 71.5629 |  |
| 1140 | 72.6543 | 72.6491 | 72.6439 |  |
| 1160 | 73.8332 | 73.828  | 73.8228 |  |
| 1180 | 75.1318 | 75.1265 | 75.1212 |  |
| 1200 | 76.5805 | 76.5751 | 76.5696 |  |



Şekil 16. *InP* yarıiletkeninin  $C_p(T)$  sabit basınçta ısı kapasitesinin *n* farklı değerlerinde sıcaklığa göre değişmesi (siyah çizgi n = 2.9, kırmızı çizgi n = 3.0, mavi çizgi ise n = 3.1 değerlerine karşılık gelir).

**Tablo 9.** *InAs* yarıiletkeninin  $C_V(T)$  sabit hacimde 151 kapasitesinin *n* farklı değerlerinde sıcaklığa göre değişmesi

| Т   | <i>n</i> = 2.9 | <i>n</i> = 3.0 | <i>n</i> = 3.1 | (Boussaid ve |
|-----|----------------|----------------|----------------|--------------|
| 200 | 40.0395        | 40.000         | 30.0804        | ark., 2019)  |
| 200 | 41 5042        | 41 479         | 41 4545        |              |
| 240 | 42.6794        | 42.658         | 42.6371        |              |
| 260 | 43.633         | 43.614         | 43.5966        |              |
| 280 | 44.4151        | 44.399         | 44.3836        |              |
| 300 | 45.0633        | 45.049         | 45.0356        | 46.57        |
| 320 | 45.6055        | 45.593         | 45.5811        |              |
| 340 | 46.0631        | 46.052         | 46.0414        |              |
| 360 | 46.4525        | 46.443         | 46.4331        |              |
| 380 | 46.7863        | 46.777         | 46.7688        | 47.01        |
| 400 | 47.0744        | 47.066         | 47.0586        |              |
| 420 | 47.3247        | 47.317         | 47.3104        |              |
| 440 | 47.5434        | 47.537         | 47.5304        |              |
| 460 | 47.7356        | 47.730         | 47.7237        | 47.89        |
| 480 | 47.9053        | 47.900         | 47.8944        |              |
| 500 | 48.0558        | 48.051         | 48.0458        |              |

48.185

48.306

48.414

48.511

48.600

48.679

48.752

48.819

48.879

48.935

48.986

49.034

49.077

48.1808 48.3015

48.5078

48.5962

48.6764

48.7494

48.816

48.8769

48.9328

48.9842

49.0315

49.0752

49.21

48.41

520

540

560

580

600

620

640

660

680

700

720

740

760

48.19

48.31

48.4178

48.6029

48.6826

48.7552

48.8214

48.8819

48.9374

48.9885

49.0355

49.0789

48.515

 $(\theta_D = 280K, \theta_E = 425K, T_m = 1215K)$  (Boussaid ve ark., 2019).

| 780  | 49.119  | 49.117 | 49.1157 |  |
|------|---------|--------|---------|--|
| 800  | 49.1562 | 49.155 | 49.1531 |  |
| 820  | 49.1908 | 49.189 | 49.1879 |  |
| 840  | 49.2229 | 49.222 | 49.2203 |  |
| 860  | 49.2528 | 49.252 | 49.2504 |  |
| 880  | 49.2807 | 49.280 | 49.2786 |  |
| 900  | 49.3068 | 49.306 | 49.3049 |  |
| 920  | 49.3312 | 49.330 | 49.3295 |  |
| 940  | 49.354  | 49.353 | 49.3525 |  |
| 960  | 49.3754 | 49.375 | 49.3741 |  |
| 980  | 49.3955 | 49.395 | 49.3944 |  |
| 1000 | 49.4144 | 49.414 | 49.4135 |  |
| 1020 | 49.4322 | 49.432 | 49.4315 |  |
| 1040 | 49.449  | 49.449 | 49.4485 |  |
| 1060 | 49.4648 | 49.465 | 49.4645 |  |
| 1080 | 49.4797 | 49.480 | 49.4796 |  |
| 1100 | 49.4938 | 49.494 | 49.4939 |  |
| 1120 | 49.5071 | 49.507 | 49.5074 |  |
| 1140 | 49.5198 | 49.520 | 49.5202 |  |
| 1160 | 49.5317 | 49.532 | 49.5323 |  |
| 1180 | 49.543  | 49.544 | 49.5438 |  |
| 1200 | 49.5538 | 49.554 | 49.5547 |  |



Şekil 17. *InAs* yarıiletkeninin  $C_v(T)$  sabit hacimde ısı kapasitesinin *n* farklı değerlerinde sıcaklığa göre değişmesi (siyah çizgi n = 2.9, kırmızı çizgi n = 3.0, mavi çizgi ise n = 3.1 değerlerine karşılık gelir).

**Tablo 10**. *InAs* yarıiletkeninin  $C_p(T)$  sabit basınçta ısı kapasitesinin *n* farklı değerlerinde sıcaklığa göre değişmesi  $(\theta_D = 280K, \theta_E = 425K, T_m = 1215K)$  (Boussaid ve ark., 2019).

| Т   | <i>n</i> = 2.9 | <i>n</i> = 3.0 | <i>n</i> = 3.1 | (Boussaid ve |
|-----|----------------|----------------|----------------|--------------|
|     |                |                |                | ark., 2019)  |
| 200 | 41.4842        | 41.452         | 41.4207        |              |
| 220 | 43.23          | 43.202         | 43.176         |              |
| 240 | 44.6915        | 44.668         | 44.6451        |              |
| 260 | 45.9358        | 45.915         | 45.8955        |              |
| 280 | 47.0128        | 46.995         | 46.9773        |              |
| 300 | 47.9598        | 47.944         | 47.9283        | 47.95        |
| 320 | 48.8049        | 48.791         | 48.7768        |              |
| 340 | 49.5699        | 49.557         | 49.5446        |              |
| 360 | 50.2714        | 50.260         | 50.2485        | 49.38        |
| 380 | 50.9224        | 50.912         | 50.9016        |              |

| 400  | 51.5333 | 51.524 | 51.5143 |       |
|------|---------|--------|---------|-------|
| 420  | 52.1124 | 52.103 | 52.0949 |       |
| 440  | 52.6662 | 52.658 | 52.6501 |       |
| 460  | 53.2005 | 53.193 | 53.1855 | 52.75 |
| 480  | 53.7196 | 53.713 | 53.7057 |       |
| 500  | 54.2275 | 54.221 | 54.2145 |       |
| 520  | 54.7274 | 54.721 | 54.7153 |       |
| 540  | 55.2222 | 55.216 | 55.2109 |       |
| 560  | 55.7144 | 55.709 | 55.7037 | 56.22 |
| 580  | 56.2061 | 56.201 | 56.1961 |       |
| 600  | 56.6995 | 56.695 | 56.6901 |       |
| 620  | 57.1964 | 57.192 | 57.1876 |       |
| 640  | 57.6986 | 57.694 | 57.6902 |       |
| 660  | 58.2078 | 58.204 | 58.1999 | 58.41 |
| 680  | 58.7256 | 58.722 | 58.7181 |       |
| 700  | 59.2537 | 59.250 | 59.2467 |       |
| 720  | 59.7938 | 59.791 | 59.7872 |       |
| 740  | 60.3477 | 60.345 | 60.3414 |       |
| 760  | 60.9171 | 60.914 | 60.9111 |       |
| 780  | 61.504  | 61.501 | 61.4984 |       |
| 800  | 62.1106 | 62.108 | 62.1053 |       |
| 820  | 62.739  | 62.737 | 62.734  |       |
| 840  | 63.392  | 63.390 | 63.3873 |       |
| 860  | 64.0723 | 64.070 | 64.0679 |       |
| 880  | 64.7832 | 64.781 | 64.7791 |       |
| 900  | 65.5285 | 65.527 | 65.5247 |       |
| 920  | 66.3125 | 66.311 | 66.3091 |       |
| 940  | 67.1405 | 67.139 | 67.1374 |       |
| 960  | 68.0186 | 68.017 | 68.0158 |       |
| 980  | 68.9544 | 68.953 | 68.9519 |       |
| 1000 | 69.9572 | 69.956 | 69.955  |       |
| 1020 | 71.0387 | 71.038 | 71.0369 |       |
| 1040 | 72.2143 | 72.214 | 72.2129 |       |
| 1060 | 73.5043 | 73.504 | 73.5033 |       |
| 1080 | 74.9367 | 74.937 | 74.9362 |       |

55 | YARIİLETKENLERİN SABİT HACİMDE VE BASINÇTA ISI KAPASİTELERİNİN EİNSTEİN-DEBYE YAKLAŞIMI KULLANILARAK İNCELENMESİ

| 1100 | 76.5522 | 76.553 | 76.5523 |  |
|------|---------|--------|---------|--|
| 1120 | 78.4136 | 78.414 | 78.4144 |  |
| 1140 | 80.6265 | 80.628 | 80.6282 |  |
| 1160 | 83.3961 | 83.398 | 83.3991 |  |
| 1180 | 87.2405 | 87.244 | 87.2459 |  |
| 1200 | 95.3146 | 95.330 | 95.3378 |  |



Şekil 18. *InAs* yarıiletkeninin  $C_p(T)$  sabit basınçta ısı kapasitesinin *n* farklı değerlerinde sıcaklığa göre değişmesi (siyah çizgi n = 2.9, kırmızı çizgi n = 3.0, mavi çizgi ise n = 3.1 değerlerine karşılık gelir).

**Tablo 11.** *ZnO* yariiletkeninin  $C_V(T)$  sabit hacimde 151 kapasitesinin *n* farklı değerlerinde 51. sıcaklığa göre değişmesi  $(\theta_D = 400K, \theta_E = 554K, T_m = 2242K)$  (Boussaid ve ark., 2019)

| Т   | <i>n</i> = 2.9 | <i>n</i> = 3.0 | <i>n</i> = 3.1 | (Boussaid |
|-----|----------------|----------------|----------------|-----------|
|     |                |                |                | ve ark.,  |
|     |                |                |                | 2019)     |
| 200 | 34.2943        | 34.238         | 34.1849        |           |
| 220 | 36.393         | 36.345         | 36.2995        |           |
| 240 | 38.1303        | 38.089         | 38.0498        |           |
| 260 | 39.5757        | 39.540         | 39.5057        |           |
| 280 | 40.7856        | 40.754         | 40.7243        |           |
| 300 | 41.805         | 41.777         | 41.7509        | 42.31     |
| 320 | 42.6696        | 42.645         | 42.6216        |           |
| 340 | 43.4078        | 43.386         | 43.3649        |           |
| 360 | 44.042         | 44.022         | 44.0035        | 44.61     |
| 380 | 44.5903        | 44.573         | 44.5555        |           |
| 400 | 45.0669        | 45.051         | 45.0354        |           |
| 420 | 45.4836        | 45.469         | 45.4548        |           |
| 440 | 45.8496        | 45.836         | 45.8233        |           |
| 460 | 46.1728        | 46.160         | 46.1486        | 47.11     |
| 480 | 46.4593        | 46.448         | 46.4371        |           |
| 500 | 46.7145        | 46.704         | 46.694         |           |
| 520 | 46.9426        | 46.933         | 46.9236        |           |
| 540 | 47.1474        | 47.138         | 47.1297        |           |
| 560 | 47.3317        | 47.323         | 47.3153        | 47.84     |
| 580 | 47.4983        | 47.491         | 47.4831        |           |
| 600 | 47.6493        | 47.642         | 47.6351        |           |
| 620 | 47.7866        | 47.780         | 47.7732        |           |
| 640 | 47.9118        | 47.905         | 47.8992        |           |
| 660 | 48.0261        | 48.020         | 48.0144        | 46.78     |
| 680 | 48.1309        | 48.125         | 48.1199        |           |
| 700 | 48.2272        | 48.222         | 48.2168        |           |
| 720 | 48.3158        | 48.311         | 48.306         |           |

| 740  | 48.3975 | 48.393 | 48.3883 |  |
|------|---------|--------|---------|--|
| 760  | 48.4731 | 48.469 | 48.4643 |  |
| 780  | 48.5431 | 48.539 | 48.5348 |  |
| 800  | 48.608  | 48.604 | 48.6002 |  |
| 820  | 48.6683 | 48.665 | 48.6609 |  |
| 840  | 48.7245 | 48.721 | 48.7175 |  |
| 860  | 48.7769 | 48.774 | 48.7703 |  |
| 880  | 48.8259 | 48.823 | 48.8196 |  |
| 900  | 48.8717 | 48.869 | 48.8657 |  |
| 920  | 48.9145 | 48.912 | 48.9088 |  |
| 940  | 48.9547 | 48.952 | 48.9493 |  |
| 960  | 48.9925 | 48.990 | 48.9874 |  |
| 980  | 49.028  | 49.026 | 49.0232 |  |
| 1000 | 49.0615 | 49.059 | 49.0569 |  |
| 1020 | 49.093  | 49.091 | 49.0886 |  |
| 1040 | 49.1227 | 49.121 | 49.1186 |  |
| 1060 | 49.1508 | 49.149 | 49.1469 |  |
| 1080 | 49.1773 | 49.175 | 49.1736 |  |
| 1100 | 49.2025 | 49.201 | 49.1989 |  |
| 1120 | 49.2263 | 49.225 | 49.2229 |  |
| 1140 | 49.2488 | 49.247 | 49.2457 |  |
| 1160 | 49.2702 | 49.269 | 49.2673 |  |
| 1180 | 49.2906 | 49.289 | 49.2878 |  |
| 1200 | 49.3099 | 49.309 | 49.3073 |  |



Şekil 19. *ZnO* yarıiletkeninin  $C_v(T)$  sabit hacimde ısı kapasitesinin *n* farklı değerlerinde sıcaklığa göre değişmesi (siyah çizgi n = 2.9, kırmızı çizgi n = 3.0, mavi çizgi ise n = 3.1 değerlerine karşılık gelir).

**Tablo 12**. *ZnO* yariiletkeninin  $C_p(T)$  sabit basınçta ısı kapasitesinin *n* farklı değerlerinde sıcaklığa göre değişmesi  $(\theta_D = 400K, \theta_E = 554K, T_m = 2242K)$  (Boussaid ve ark., 2019).

| Т   | <i>n</i> = 2.9 | <i>n</i> = 3.0 | <i>n</i> = 3.1 | (Boussaid |
|-----|----------------|----------------|----------------|-----------|
|     |                |                |                | ve ark.,  |
|     |                |                |                | 2019)     |
| 200 | 34.8467        | 34.789         | 34.7338        |           |
| 220 | 37.0811        | 37.032         | 36.9841        |           |
| 240 | 38.9589        | 38.916         | 38.8749        |           |
| 260 | 40.5481        | 40.511         | 40.4746        |           |
| 280 | 41.904         | 41.871         | 41.8392        |           |
| 300 | 43.0709        | 43.042         | 43.0135        | 42.55     |
| 320 | 44.0842        | 44.058         | 44.0329        |           |
| 340 | 44.972         | 44.948         | 44.9259        |           |
| 360 | 45.7566        | 45.735         | 45.7149        | 44.58     |

| 380  | 46.4558 | 46.437 | 46.418  |       |
|------|---------|--------|---------|-------|
| 400  | 47.0841 | 47.067 | 47.0496 |       |
| 420  | 47.6531 | 47.637 | 47.6215 |       |
| 440  | 48.1723 | 48.157 | 48.1432 |       |
| 460  | 48.6493 | 48.636 | 48.6224 | 49.13 |
| 480  | 49.0906 | 49.078 | 49.0657 |       |
| 500  | 49.5015 | 49.490 | 49.4784 |       |
| 520  | 49.8864 | 49.875 | 49.8649 |       |
| 540  | 50.2489 | 50.239 | 50.2288 |       |
| 560  | 50.5923 | 50.583 | 50.5735 | 52.04 |
| 580  | 50.9191 | 50.910 | 50.9015 |       |
| 600  | 51.2316 | 51.223 | 51.215  |       |
| 620  | 51.5318 | 51.524 | 51.5162 |       |
| 640  | 51.8214 | 51.814 | 51.8066 |       |
| 660  | 52.1016 | 52.095 | 52.0877 | 52.86 |
| 680  | 52.3739 | 52.367 | 52.3607 |       |
| 700  | 52.6394 | 52.633 | 52.6268 |       |
| 720  | 52.8989 | 52.893 | 52.887  |       |
| 740  | 53.1534 | 53.148 | 53.1421 |       |
| 760  | 53.4036 | 53.398 | 53.3928 | 54.17 |
| 780  | 53.6501 | 53.645 | 53.6399 |       |
| 800  | 53.8937 | 53.889 | 53.8839 |       |
| 820  | 54.1347 | 54.130 | 54.1254 |       |
| 840  | 54.3738 | 54.369 | 54.3649 |       |
| 860  | 54.6114 | 54.607 | 54.6029 |       |
| 880  | 54.8478 | 54.844 | 54.8397 |       |
| 900  | 55.0835 | 55.080 | 55.0757 |       |
| 920  | 55.3188 | 55.315 | 55.3114 |       |
| 940  | 55.554  | 55.550 | 55.5469 |       |
| 960  | 55.7894 | 55.786 | 55.7826 |       |
| 980  | 56.0253 | 56.022 | 56.0188 |       |
| 1000 | 56.262  | 56.259 | 56.2558 |       |
| 1020 | 56.4997 | 56.497 | 56.4938 |       |
| 1040 | 56.7387 | 56.736 | 56.733  |       |
| 1060 | 56.9792 | 56.976 | 56.9738 |       |

| 1080 | 57.2214 | 57.219 | 57.2162 |  |
|------|---------|--------|---------|--|
| 1100 | 57.4655 | 57.463 | 57.4606 |  |
| 1120 | 57.7119 | 57.710 | 57.7072 |  |
| 1140 | 57.9606 | 57.958 | 57.9561 |  |
| 1160 | 58.2118 | 58.210 | 58.2076 |  |
| 1180 | 58.4659 | 58.464 | 58.4619 |  |
| 1200 | 58.723  | 58.721 | 58.7192 |  |



Şekil 20. ZnO yarıiletkeninin  $C_p(T)$  sabit basınçta ısı kapasitesinin *n* farklı değerlerinde sıcaklığa göre değişmesi (siyah çizgi n = 2.9, kırmızı çizgi n = 3.0, mavi çizgi ise n = 3.1 değerlerine karşılık gelir).

# 5. TARTIŞMA ve SONUÇ

Malzemelerin termodinamik özellikleri, özellikle 1s1 kapasitesi için Debye fonksiyonlarının belirlenmesi, birçok yüksek kaliteli cihazın temelini olusturan yapı malzemeleri olarak kullanılan katıların pratik uygulamalarında çok önemlidir. Özellikle de tüm teknolojik cihazların temelini oluşturan variiletkenlerin termodinamik özelliklerinin hassaslikla incelenmesi çok önemlidir. Bu çalışmada yarıiletkenlerin fiziksel özelliklerinden olan öz 151 kapasitelerinin (sabit hacimde ve sabit değişmesi incelenmistir. basincta) sıcaklığa göre Bu vöntemlerden biriside son dönemlerde güncel çalışma konusu olan Einstein-Debye yaklaşımıdır. Bu kitapta Einstein-Debye Si, Ge, GaAs, InP, InAs ve ZnO vaklasımı kullanılarak variiletkenlerinin 1s1 kapasitelerinin sıcaklığa göre değişmesi incelenmistir. Hesaplamaların hassaslığı, Einstein-Debye yaklaşımında ortaya çıkan n boyutlu tamsayı ve tamsayı olmayan Debye fonksiyonlarının hassas, hızlı ve yeterli doğrulukta hesaplanmasına bağlıdır. Çalışmada, n'nin tamsayı ve tamsayı olmayan değerlerinde Debye fonksiyonlarının hesaplanması için literatürde önerilen vöntem kullanılmıştır. Böylelikle Einstein-Debye yaklaşımına göre yarıiletkenlerin termal özellikleri daha hassas hesaplanabilmektedir.

Bu çalışmada, Debye fonksiyonları için geliştirilen formülün bir uygulaması olarak, *Si*, *Ge*, *GaAs*, *InP*, *InAs ve ZnO* kristallerinin  $C_p$  ve  $C_v$  1sı kapasitelerinin sıcaklığa göre değişmesi incelenmiştir. Sayısal sonuçların karşılaştırılması sonucunda, formülün deneysel sonuçlarla iyi bir uyum içinde olduğu açıkça görülmektedir. Literatürde genellikle adı geçen yarıiletkenlerin fiziksel özellikleri n=3 alınarak hesaplamalar yapılmıştır. Bu çalışmada n=3 sayısının civarında olan n=2.9 ve n=3.1 durumları içinde öz 1sı miktarlarının sıcaklığa göre değişmesini inceledik ve sıcaklığın tüm aralığında önerilen yöntemin geçerli olduğu görüldü. n'nin tamsayı ve tamsayı olmayan değerlerinde Debye fonksiyonları için (3.1.6) denklemi kullanılarak Si, Ge, GaAs, InP, InAs ve ZnO kristalleri için öz 1s1 kapasitelerinin ( $C_p ve C_v$ ) hesaplamaları yapılmıştır. *n* 'nin tamsayı ve tamsayı olmayan değerleri için elde edilen sonuçları Şekil (6-17) olarak verilmiştir.Isı Cizelge (1-12) ve kapasitelerinin,  $C_P ve C_V$  'nin sıcaklığa bağımlılığının hesaplama sonuçları ve deneysel veriler ile karşılaştırıldığında n = 2.9değerindeki sonuçların deneysel sonuçlara daha yakın olduğu görülmektedir. Çizelge (6-17)'de Si, Ge, GaAs, InP, InAs ve ZnO için sonuçlar n=3, n=2.9 ve n=3.1 değerlerinde verilmistir. Çizelgelerden görüldüğü gibi alınan sonuçlardan n = 2.9değerindeki hesaplama sonuçları deneysel sonuçlara daha yakındır. Ayrıca Şekil (6-17) 'den görüldüğü gibi n sayısının n=3, n=2.9 ve n=3.1 değerlerindeki sonuçların birbirine yakın önerilen vöntemin variiletkenlerin fiziksel olması da hesaplanması icin uygulanabilirliğini özelliklerinin Bu da bize önerilen yöntemi kullanarak göstermektedir. yarıiletkenlerin ısı kapasitelerinin tüm sıcaklık aralıklarında daha hassas hesaplamaya olanak sağlayacaktır. Ayrıca bu çalışmadan alınan sonuçlar ile Si, Ge, GaAs, InP, InAs ve ZnO yarıiletkenlerinin ve diğer yarıiletkenlerin de ısı kapasitesinden yola çıkarak diğer termodinamik özelliklerinin de belirlenebilmesi sağlanacaktır.

## KAYNAKÇA

- Abeles, B. (1963). Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. *Physical Review*, 131(5), 1906.
- Abu-Eishah, S. I. (2001). Correlations for the thermal conductivity of metals as a function of temperature. *International Journal of Thermophysics*, 22(6), 1855-1868 https://doi.org/10.1023/A:1013155404019.
- Anderson, J.C. (1970) Conduction in thin semiconductor films, Advances in Physics, 19:79, 311-338, http://doi.org/10.1080/00018737000101121
- Askerov, B. M., & Cankurtaran, M. (1994). Isobaric specific heat and thermalexpansion of solids in the Debye approximation. *physica status solidi* (*b*), *185*(2), 341-348 https://doi.org/10.1002/pssb.2221850204
- Avsec, J., & Marcic, M. (2002). Calculation of elastic modulus and other thermophysical properties for molecular crystals. *Journal* of thermophysics and heat transfer, 16(3), 463-468 https://doi.org/10.2514/2.6702
- Balkanski, M., Wallis, R. F., & Wallis, R. F. (2000). Semiconductor physics and applications (Vol. 8). Oxford University Press.
- Barbagiovanni, E. G., Lockwood, D. J., Simpson, P. J., & Goncharova, L. V. (2014). Quantum confinement in Si and Ge nanostructures: theory and experiment. *Applied Physics Reviews*, 1(1), 011302
- Barron, T. H. K., Collins, J. G., & White, G. K. (1980). Thermal expansion of solids at low temperatures. *Advances in Physics*, 29(4), 609 https://doi.org/10.1080/00018738000101426.

- Boussaid, O., Belgacem, C. H., & Fnaiech, M. (2019). Heat Capacity Calculation of Some Semiconductor Compounds Using Lambert W Function. *Silicon*, *11*(3), 1673-1676.
- Cankurtaran, M., & Askerov, B. M. (1996). Equation of state, isobaric specific heat, and thermal expansion of solids with polyatomic basis in the Einstein-Debye approximation. *physica status solidi* (b), 194(2), 499-507
- Debye, P. (1912) Concerning the theory of specific heat. Ann Physik, 39, 789-839
- Dong, J., Sankey, O. F., & Myles, C. W. (2001). Theoretical study of the lattice thermal conductivity in Ge framework semiconductors. *Physical review letters*, 86(11), 2361 https://doi.org/10.1103/PhysRevLett.86.2361
- Einstein, A. (1989). The Collected Papers of Albert Einstein, Vol. 2, The Swiss Years: Writings, 1900–1909 (English Translation Supplement).
- Eser, E., & Koç, H. (2021). Theoretical study of specific heat capacity of thermoelectric half-Heusler XNiSb (X= Sc, Tm) compounds. *Philosophical Magazine Letters*, 1-6. https://doi.org/10.1080/09500839.2021.1874068
- Eser, E., Duyuran, B., Bölükdemir, M. H., & Koç, H. (2020). A study on heat capacity of oxide and nitride nuclear fuels by using Einstein-Debye approximation. *Nuclear Engineering and Technology*, 52(6), 1208-1212.
- Eymet, V., Brasil, A. M., El Hafi, M., Farias, T. L., & Coelho, P. J. (2002). Numerical investigation of the effect of soot aggregation on the radiative properties in the infrared region and radiative heat transfer. *Journal of Quantitative Spectroscopy and Radiative Transfer*, 74(6), 697-718, https://doi.org/10.1016/S0022-4073(01)00280-1.

- Fraser, D. A. (1986). *The physics of semiconductor devices*. Clarendon Press.
- Gaur, U., Mehta, A., & Wunderlich, B. (1978). Heat capacity measurements by computer-interfaced DSC. *Journal of Thermal Analysis* and *Calorimetry*, 13(1), 71-84 https://doi.org/10.1007/bf01909910.
- Glazov, V. M., & Pashinkin, A. S. (2000). Thermal expansion and heat capacity of GaAs and InAs. *Inorganic materials*, *36*(3), 225-231 https://doi.org/10.1007/BF02757926
- Gradshteyn, I. S., & Ryzhik, I. M. (2014). *Table of integrals, series, and products*. Academic press.
- Grimvall, G. (1986). Thermophysical Properties of Materials, ser. Selected Topics in Solid State Physics, E. Wohlfarth, Ed. Amsterdam: North-Holland, 18.
- Guseinov, I. I., & Mamedov, B. A. (2007). Calculation of integer and noninteger n-dimensional debye functions using binomial coefficients and incomplete gamma functions. *International Journal of Thermophysics*, 28(4), 1420-1426 http://doi.org/ 10.1007/s10765-007-0256-1
- Haedler, A. T., Kreger, K., Issac, A., Wittmann, B., Kivala, M., Hammer, N., ... & Hildner, R. (2015). Long-range energy transport in single supramolecular nanofibres at room temperature. *Nature*, *523*(7559), 196-199 https://doi.org/10.1038/nature14570.
- Kecik, D., Onen, A., Konuk, M., Gürbüz, E., Ersan, F., Cahangirov, S.,... & Ciraci, S. (2018). Fundamentals, progress, and future directions of nitride-based
- semiconductors and their composites in two-dimensional limit: A firstprinciples perspective to recent synthesis. *Applied Physics Reviews*, 5(1), 011105. https://doi.org/10.1063/1.4990377.

- Kim, K., & Kaviany, M. (2016). Thermal conductivity switch: Optimal semiconductor/metal melting transition. *Physical Review B*, *94*(15), 155203 https://doi.org/10.1103/PhysRevB.94.155203.
- Kittel, C., McEuen, P., & McEuen, P. (1996). *Introduction to solid state physics* (Vol. 8, pp. 105-130). New York: Wiley.
- Landau, L. D., Lifshits, E. M., & Pitaevskiĭ, L. P. (1980). *Statisticheskaia fizika* (Vol. 5). Pergamon.
- Landsberg, P. T. (Ed.). (2014). *Problems in thermodynamics and statistical physics* (Courier Corporation.).
- Lee, J. S., Lee, S., & Noh, T. W. (2015). Resistive switching phenomena: A review of statistical physics approaches. *Applied Physics Reviews*, 2(3), 031303 https://doi.org/10.1063/1.4929512.
- Liang, Y. H., & Towe, E. (2018). Progress in efficient doping of high aluminum-containing group III-nitrides. *Applied Physics Reviews*, 5(1), 011107. https://doi.org/10.1063/1.5009349.
- Lu, L. Y., Cheng, Y., Chen, X. R., & Zhu, J. (2005). Thermodynamic properties of MgO under high pressure from first-principles calculations. *Physica B: Condensed Matter*, 370(1-4), 236-242 https://doi.org/10.1016/j.physb.2005.09.017.
- Łukasiak, L., & Jakubowski, A. (2010). History of semiconductors. Journal of Telecommunications and information technology, 3-9.
- Magomedov, M. N. (2002). Thermodynamically consistent calculation of the Debye temperature using thermophysical data. *High temperature*, 40(4), 542-545 https://doi.org/10.1023/A:1019615230262.

- Mamedov, B. A. (2014). Accurate analytical evaluation of heat capacity of nuclear fuels using Einstein–Debye approximation. *Nuclear Engineering* and *Design*, 276,124-127 https://doi.org/10.1016/j.nucengdes.2014.05.038.
- Mishra, U., & Singh, J. (2007). Semiconductor device physics and design. Springer Science & Business Media.
- Morris, P. R. (1990). A history of the world semiconductor industry (No. 12). IET.
- Neumann, H. (2004). High-temperature heat capacity and lattice anharmonicity of LiGaO2. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 39(3), 245-254.
- Pathak, P. D., & Pandya, N. M. (1975). Debye temperatures of KI and RbI and the anharmonic parameters of their potential functions. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 31(2), 185-188.
- Perron, J. C. (1967). Electrical and thermoelectrical properties of selenium Tellurium liquid alloys. Advances in Physics, 16(64), 657-666.
- Perry, T. S. (2002). Not just blue sky [Herbert Kroemer]. *IEEESpectrum*, 39(6), 32-37
- Pyda, M., Bartkowiak, M., & Wunderlich, B. (1998). Computation of heat capacities of solids using a general Tarasov equation. *Journal of thermal analysis and calorimetry*, 52(2), 631-656.
- Raya-Moreno, M., Rurali, R., & Cartoixà, X. (2019). Thermal conductivity for III-V and II-VI semiconductor wurtzite and zinc-blende polytypes: The role of anharmonicity and phase space. *Physical Review Materials*, *3*(8), 084607

- Riordan, M., Hoddeson, L., & Herring, C. (1999). The invention of the transistor. In *More Things in Heaven and Earth* (pp. 563-578). Springer, NY.
- Ross, I. M. (1998). The invention of the transistor. *Proceedings of the IEEE*, 86(1), 7-28
- Roy, D. K. (2004). *Physics of semiconductor devices*. Universities Press.
- Schwartz, M.J. (2019). Statistical Mechanics, Spring 2019 Lecture 10:Quantum Statistical Mechanics 1.
- Sze, S. M., & Ng, K. K. (2006). *Physics of semiconductor devices*. John wiley & sons.
- Varshni, Y. P. (1967). Temperature dependence of the energy gap in semiconductors. *physica*, *34*(1),149-154 https://doi.org/10.1016/0031-8914(67)90062-6.
- Wehmeyer, G., Yabuki, T., Monachon, C., Wu, J., & Dames, C. (2017). Thermal diodes, regulators, and switches: Physical mechanisms and potential applications. *Applied Physics Reviews*, 4(4), 041304 https://doi.org/10.1063/1.5001072
- Windsor, C. T., & Sinclair, R. N. (1976). The Debye–Waller factor of nickel measured at high scattering vectors by pulsed neutron powder diffraction. *Acta*
- Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 32(3), 395-409

https://doi.org/10.1107/S0567739476000934.

Yacobi, B. G. (2003). Semiconductor materials: an introduction to basic principles. Springer Science & Business Media

Zhang, P., Valfells, Á., Ang, L. K., Luginsland, J. W., & Lau, Y. Y. (2017).100 years of the physics of diodes. *Applied Physics Reviews*, 4(1), 011304

https://doi.org/10.1063/1.4978231

Ziman, J. M. (1972). *Principles of the Theory of Solids*. Cambridge university press.


## ISBN: 978-625-367-463-2