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Dear Readers 

Over the past few centuries, human activities have affected the 

nature of the world, and inevitably the aquatic ecosystems with lakes, 

wetlands, rivers, marine environments, and other aquatic habitats have 

been particularly vulnerable to these changes. Contaminants on the 

aquatic ecosystems caused effects on organisms in direct or indirect way. 

 Aquatic ecosystems are vital to planet health playing crucial role 

for sustainability of the biodiversity, regulating the climate and providing 

resources to many species especially humans. However, in the 

Anthropogenic Age—an era marked by the overwhelming influence of 

human behavior on the Earth’s ecosystems—these vital systems face 

unprecedented challenges especially in the aquatic ecosystems.  

This book presents the studies of the complex and multifaceted 

issues of human-induced pollution and the alternative scientific 

approaches for aquatic toxicology in aquatic ecosystems. We have tried 

to prepare a book for any readers to be interested in the human effects on 

the aquatic ecosystems and balance between new learners and even for 

the subject experts. It serves as a call to action and a reminder that while 

the Anthropogenic Age has brought about profound change, it is also an 

opportunity to reshape our relationship with the environment for the 

better. The health of our aquatic ecosystems depends on the choices we 

make today—and in these choices, there lies hope for a more sustainable 

and harmonious future. 

We would like to express our gratitude to all the researchers who 

contributed to the preparation of this book. We hope that the book will 

benefit the researchers in this field and the health of our aquatic 

ecosystems. 

Editors 

Prof. Dr. Aysel Çağlan GÜNAL1 

Assoc. Prof. Dr. Pınar ARSLAN YÜCE2 

Assist. Prof. Dr. Müge FIRAT3 
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INTRODUCTION 

Water is a fluid that holds various elements dissolved and 

suspended within it in solid, liquid and gas forms. The amounts and 

types of these substances in water play roles in determining water 

quality. It is important to assess the standards of quality in this 

ecosystem that impact aquatic organisms and are impacted by them 

directly (Alley, 2007; Boyd, 2019). Freshwater sources on the Earth's 

surface play a role in the environment and the economy. They are 

essential for drinking water supply and irrigation in agriculture and 

supporting aquatic life forms (Gül, 2021). 

Established quality standards and regulations for water resources. 

Institutions such as the United States Environmental Protection Agency 

(USEPA, 2018), the European Union Water Framework Directives (EU 

WFD, 2006; 2013), the United Nations Economic Commission for 

Europe (UNECE, 1993), The Organisation for Economic Co-operation 

and Development (OECD, 2007; 2009), The Canadian Council of 

Ministers of the Environment (CCME, 2015), as well as Türkiye’s 

Surface Water Quality Regulation (YSKY, 2016) and Water Pollution 

Control Regulation (SKKY, 2004), have set various criteria for the 

protection and management of water resources (Figure 1). Standards 

for quality can differ among regions and societies because of varying 

weather conditions and societal norms, for living standards. People 

generated pollutants are an element influencing the cleanliness of 

water. Heavy metals pose a risk to water quality when they enter 

aquatic environments through both natural means and industrial actions 

(Gül, 2021). 

Nickel is known as a heavy metal naturally in water bodies, soils 

and air. It is extensively utilized in industries and has the capability to 

seep into water sources through various means such as atmospheric 

deposition during rain and erosion processes or via discharge of 

wastewater. Although nickel occurs naturally in environments at 

minimal levels, human actions have initially led to its accumulation at 

higher concentrations. Significant human activities responsible for 

nickel movement into rivers involve mining, metal plating, burning 

fossil fuels, and using subpar waste disposal methods (Gül, 2021). 
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Figure 1. International and national water quality criteria regulations 

Pure nickel is hard, silver-coloured metal that forms chemical 

bonds with other metals to create alloys. It is the 22nd most abundant 

element and may be found in all aquatic ecosystems. Under oxic 

conditions, nickel is either bound to dissolved organic matter or 

adsorbed onto insoluble iron or manganese hydroxides. In anoxic 

conditions, it forms insoluble sulfides (Pyle & Couture, 2012). The 

most commonly encountered alloys are arsenide, a binary compound 

with arsenic, and nickel sulfate. Mining activities can lead to the 

contamination of water resources with nickel. In the metal plating 

industry, nickel is used as a catalyst in coatings. Nickel salts are soluble 

in water, which facilitates their dispersion into aquatic environments. 

Improper disposal of nickel-containing waste, particularly into rivers, 

can cause significant contamination. Surface water concentrations as 

high as 1 mg/L have been reported, whereas typical concentrations in 

such waters are between 5–20 µg/L. In older houses, the presence of 

nickel may contaminate from the uses of nickel-alloy pipes, impacting 

domestic water supplies (Güler & Çobanoğlu, 1997). 

Nickel poses a substantial threat to aquatic ecosystems at high 

concentrations (Abel, 1996). Aquatic organisms inhabiting areas near 

pollution sources are particularly vulnerable to both the direct and 

indirect toxic effects of nickel. 
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Nickel is trace amounts in the atmosphere. It is considered a 

nutrient for plants and terrestrial animals, however is not essential for 

aquatic organisms. Nevertheless, increasing evidence suggests that 

nickel might serve as a potential nutrient for fish (Pyle & Couture, 

2012). Some studies have reported to rare in fish tissues, as a 

micronutrient involved in physiological activities (Boyd, 2019). A lack 

of nickel has been linked to health problems in humans, such as chronic 

bronchitis and shortness of breath. Certain nickel-containing 

compounds are regarded as potentially carcinogenic. Drinking water 

standards generally permit a maximum nickel concentration of 0.04 

mg/L (Özdilek, 2002; Türkmen, 2003). 

Aquatic vertebrates, particularly their gills, digestive systems, and 

skin, are directly exposed to the toxic effects of heavy metals. Such 

exposures can disrupt physiological, biochemical, and behavioral 

processes, while also endangering population dynamics, food chains, 

and the sustainability of ecosystems. Investigating the effects of heavy 

metals in freshwater ecosystems is important to water resource 

sustainability and ecosystem protection.  

Nickel in aquatic environments can provoke harmful biochemical 

reactions in organisms, even at low concentrations. Aquatic vertebrates 

may encounter nickel either in dissolved forms within water or as 

accumulations in sediments. Nickel can be taken by the gills or skin or 

through food intake. Then binds to albumin and short peptides before 

traveling through the bloodstream and building up in the kidneys (Pyle 

& Couture, 2012). When dissolved nickel ions are directly absorbed 

into the body system it can disrupt the balance of ions and osmosis 

while also triggering stress and causing harm to cells. Studying the 

effects of nickel pollution from rivers on aquatic vertebrates is crucial, 

for safeguard in marine life and ensuring that ecosystems are 

sustainable. 

Aquatic vertebrates can be exposed to nickel's toxic effects both 

directly and indirectly. Direct exposure occurs through contact surfaces 

of dissolved nickel in water, such as gills, skin, and olfactory 

epithelium. Indirect exposure occurs through interaction with 

contaminated sediments or consumption of prey organisms with nickel 

accumulation. This contamination can lead to the trophic transfer of 
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nickel, increasing the potential for biomagnification along the aquatic 

food chain (Pyle & Couture, 2012). 

Nickel In Surface Water Sources 

The permissible amounts of nickel in surface water resources 

may vary from country to country. The values of many prominent 

water quality regulations worldwide and the permissible levels in our 

country are given in Table 1. 

 
Table 1. Amounts of nickel allowed in some international and national water quality 

standards. 

Quality Criteria Quality Grade 
Nickel 

Concentration 

USEPA (2018) 

1st Grade 

≤8.3 (µg/L) 
2nd Grade 

3rd Grade 

4th Grade 

5th Grade ≤100 (µg/L) 

EU WFD (2006, 2013)  34 (µg/L) 

UNECE (1993) 

1st Grade <15 (µg/L) 

2nd Grade 15-87 (µg/L) 

3rd Grade 87-160 (µg/L) 

4th Grade 160-1400 (µg/L) 

5th Grade >1400 (µg/L) 

OECD (2009) 

1st Grade 10 (µg/L) 

2nd Grade 25 (µg/L) 

3rd Grade 50 (µg/L) 

4th Grade 100 (µg/L) 

5th Grade >100 (µg/L) 

YSKY (2016) and SKKY 

(2004) 

1st Grade ≤ 20 (µg/L) 

2nd Grade 50 (µg/L) 

3rd Grade 200 (µg/L) 

4th Grade >200 (µg/L) 

CCME (2015)  200 (µg/L) 

The criteria of the Surface Water Quality Regulation and Water 

Pollution Control Regulation used in Türkiye are similar to other 

international criteria. Only a serious excess in the nickel rate that can be 

found in 4th and 5th class waters determined by UNECE (1993) stands 

out. 
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Respiratory System Exposure 

It is through the gill and olfactory epithelia of aquatic organisms 

that nickel ions gain access to the body. These epithelial tissues play a 

critical role in basic physiological processes, including the diffusion of 

dissolved gases and ion exchange. The gill epithelium retains dissolved 

nickel ions in the water column, with this process influenced by 

environmental factors such as water pH, hardness and dissolved 

organic carbon (DOC) content. The bioavailability of nickel increases 

with low hardness and pH, leading to greater absorption in the gills.  

Nickel accumulation in the gill and olfactory epithelium may 

cause suppression of the Na⁺/K⁺-ATPase enzyme, which is responsible 

for ion transport. As a consequence of this inhibition, osmotic balance 

and ion homeostasis are affected. It is known that chronically exposure 

of high concentrations to dissolved nickel may occur to oxidative 

stress. The accumulation of reactive oxygen species (ROS) in cells can 

lead to lipid peroxidation and subsequent damage to cellular 

membranes, thus gills' function may impair. Such damage may 

manifest in the organism as symptoms of hypoxia and metabolic stress. 

Studies have demonstrated that nickel exposure can trigger 

cellular apoptosis in the gill epithelium and stimulate inflammatory 

responses by increasing cytokine release. Furthermore, organisms' 

growth, reproduction, and survival rates may be adversely affected. 

Heavy metals like nickel are particularly disruptive to biochemical and 

physiological processes in freshwater organisms. At toxic levels, 

bioaccumulation of nickel in some fish tissues, especially in the 

kidneys, may increase, potentially leading to biomagnification within 

the food chain. Consequently, the overall performance and vitality of 

fish can decline, rendering them more vulnerable to environmental 

stressors (Abel, 1996; Vigil, 2003). 

Skin Exposure 

Dissolved nickel ions can also be absorbed through the skin in 

some fish species. However, this route is generally less effective 

compared to the respiratory and digestive tract. Dermal exposure is 

usually favoured in environments with low water flow and high nickel 

concentrations. 
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The gill structures of fish have recently hatched are not yet fully 

developed, which makes them more susceptible to the toxic effects of 

environmental nickel. The higher membrane permeability of these 

species allows nickel ions to enter easily, which can cause 

developmental disorders (Pyle & Couture, 2012). 

Digestive System Exposure 

Aquatic vertebrates may be exposed to nickel through the 

consumption of contaminated food. Nickel tends to accumulate in 

higher trophic levels via ingested algae and benthic organisms. Once 

nickel enters the digestive system, it transforms into its ionic form due 

to the low pH in the stomach and is subsequently absorbed through the 

intestines (Pyle & Couture, 2012). 

The absorption of nickel through the digestive system is 

detoxified by hepatic metabolism. However, excessive concentrations 

of nickel have been demonstrated to induce lipid peroxidation and 

DNA damage in liver cells, which can subsequently lead to 

hepatotoxicity and, over time, liver damage (Zambelli & Ciurli, 2013). 

The manner of nickel exposure in aquatic vertebrates is 

contingent on the prevailing environmental factors and the 

physiological characteristics of the organism in question. The processes 

of absorption through ion transport via gill and intestinal epithelia play 

a pivotal role in the expression of nickel's toxic effects (Edo et al., 

2024). The physiological stress imposed on organisms by chronic 

exposure may result in ecological consequences that extend from the 

individual organism to the population level. Consequently, a 

comprehensive understanding of the biochemical mechanisms 

associated with nickel exposure is essential to the protection of aquatic 

ecosystems. 

EFFECTS ON AQUATIC VERTEBRATES 

The toxic effects of nickel usually occur in the metabolic 

processes of aquatic organisms. Suppression of enzyme activities, 

oxidative stress, disturbance of ion balance, and cellular apoptosis are 

the main physiological disorders caused by nickel. Nickel may cause 

lipid peroxidation and deoxyribonucleic acid (DNA) damage by 

increasing the production of reactive oxygen species (ROS), leading to 

long-term deterioration in general health status. In addition, nickel 
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accumulation in gill lamellae may affect osmotic balance by blocking 

ion channels. 

Oxidative Stress and Antioxidant Systems 

Oxidative stress is a resulting from an augmentation in the 

generation of reactive oxygen species (ROS) accompanied by a 

disruption in the equilibrium between cellular antioxidant defensive 

mechanisms. This leads to an oxidative deterioration of proteins, lipids, 

nucleic acids, and other cellular constituents. 

Increased ROS production at the cellular level is known to trigger 

the formation of free radicals such as superoxide (O₂-), hydrogen 

peroxide (H₂O₂) and hydroxyl radicals (OH-) by interfering with the 

mitochondrial electron transport chain. For example, in a study on 

Oreochromis mossambicus, it was shown that ROS production 

increased in fish exposed to nickel nanoparticles, resulting in lipid 

peroxidation (LPO) (Jayaseelan et al., 2014). 

In response to oxidative stress, changes occur in the activities of 

various antioxidant enzymes in fish tissues. Enzymes, such as 

superoxide dismutase (SOD), catalase (CAT) and glutathione 

peroxidase (GPx) neutralising ROS. However, nickel exposure may 

increase toxic effects by suppressing the activity of these enzymes. In a 

study on Carassius auratus, it was reported that nickel decreased SOD 

activity by 39-55% and GPx activity by 16-24% (Zheng et al., 2014). 

Glutathione (GSH) is protecting cells from oxidative stress by 

acting as an antioxidant defense mechanism within cells. Nickel 

disrupts the balance within cells by reducing GSH levels which leads to 

an increase in damage occurring in the tissues. Research shows that 

exposure to nickel results in a decrease in GSH levels in the gill and 

kidney tissues of Oncorhynchus mykiss (Topal et al., 2017). 

When the lack of GSH it weakens ability of cells to detoxify 

which can potentially lead to issues, like DNA damage and death 

through apoptosis. Lipid peroxidation can lead to cell damage, to the 

structure and function of cell membranes specifically by targeting 

polyunsaturated fatty acids in the membrane cells and promoting the 

generation of malondialdehyde (MDA) a byproduct of peroxidation 

caused by nickel exposure. This may weaken cell membranes and 

interferes with essential cellular activities Research has shown an 
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increase in lipid peroxidation and protein carbonylation in Galaxias 

maculatus even at low nickel concentrations, as 150 µg/L (Blewett et 

al., 2016). 

Nickel ions have been demonstrated to cause issues, in the 

functioning of mitochondria by increasing stress that triggers cell death 

known as apoptosis. Nickel interferes with the integrity of membranes 

leading to a decrease in ATP production. Causing an energy deficiency 

in cells. This situation results in the activation of caspase three enzymes 

which indicates cell death. Moreover, nickel has been reported to speed 

up the process of cell death, in Carassius auratus fish by activating a 

signaling pathway called JNK (Jun N kinase). (Zheng et al., 2014).  

According to Topal et al. (2017), the impact of nickel induced 

oxidative stress extends to altering how genes are expressed within 

cells well; for instance, NF-κB transcription factors can amplify 

inflammatory reactions and interfere with cell division processes over 

time leading to cellular aging and diminished organismal function. 

Histopathological Changes 

The nickel exposures induce various histopathological alterations 

at the cellular and tissue levels in aquatic vertebrates. These alterations 

are commonly observed the gills, liver, kidneys, and digestive tissues, 

significantly affecting physiologically all of the organisms. 

Nickel exposure in the gill lamellae can lead to hyperplasia, 

epithelial thickening, and lamellar fusion. These alterations severely 

restrict the gills' capacity for gas exchange and ion regulation. 

Structural disruption of the lamellae and cellular necrosis have been 

reported in the gills of Oreochromis niloticus exposed to nickel 

chloride (Marcato et al., 2014). In Hypophthalmichthys molitrix, nickel 

was found to cause mechanical damage to gill epithelia and the 

accumulation of blood cells (Athikesavan et al., 2006). 

In the liver cells, nickel can cause lipid accumulation and cellular 

damage such as pyroptosis. In O. mossambicus, nickel nanoparticles 

have been reported to result in cellular necrosis, nuclear hypertrophy, 

and vacuolization in liver tissues (Jayaseelan et al., 2014). Anomalies 

in liver enzymes such as AST and ALT point to metabolic disorders 

and cellular degeneration (Elbahnaswy et al., 2023). 
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Nickel in kidney tubules may lead to degeneration and a decrease 

in glomerular filtration rate. Studies on Carassius auratus have shown 

reduced glomerular filtration function and tubular necrosis (Topal et al., 

2017). Additionally, hyperplasia and intracellular oedema in renal 

epithelial cells are common effects of nickel exposure (Athikesavan et 

al., 2006). 

In the muscle tissues of O. mossambicus, nickel exposure has 

been found to cause fibril disintegration and necrosis. Furthermore, 

vacuolization and oedema have been reported in muscle tissue 

(Jayaseelan et al., 2014). 

The skin epithelium may also undergo irritation and histological 

damage due to the penetration of nickel ions (Athikesavan et al., 2006). 

 

Effects on Ion Exchange and Respiration 

Nickel, hampers the ion transport mechanisms, leading to 

structural changes and disruptions in oxygen uptake. These impair ion 

regulation and respiratory processes, thereby affecting the overall 

health of the vertebrates. 

Nickel adversely affects oxygen uptake and distribution in fish. 

The gill damaged by nickel, leading to respiratory dysfunction. Acute 

nickel exposure has been reported to increase the diffusion distance in 

the gill epithelia of O. mykiss, cause hyperplasia in gill cells, and 

reduce oxygen uptake by 35% (Pane et al., 2003). These disruptions 

result in decreased arterial oxygen pressure and respiratory acidosis. It 

has been reported that the increased salinity, mitigate the toxic effects 

of nickel and limit nickel accumulation in the gills of G. maculatus. 

However, this protective effect does not entirely eliminate the negative 

impact on oxygen uptake (Blewett et al., 2016). However, the 

protective effect does not entirely eliminate the negative impacts on 

oxygen uptake (Blewett et al., 2016). 

Nickel exposures disrupts the maintaining ion homeostasis and 

stabilizing ion transport mechanisms, disturbing water and electrolyte 

balance. Likewise, the nickel inhibits ion transport by suppressing 

Na⁺/K⁺-ATPase activity in the gills and kidneys, leading to increased 

osmotic stress. Low concentrations of nickel stimulated Na⁺/K⁺-

ATPase activity in C. carassius, whereas higher concentrations 

inhibited this activity (Haverinen et al., 2023). Exposure of the nickel 
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can also reduce plasma Na⁺ and Cl⁻ levels while increasing Mg²⁺ and 

Ca²⁺ levels. This is considered an indicator of the fish accelerating their 

energy metabolism to minimize ion losses, showcasing the adaptive 

nature of these aquatic vertebrates (Blewett et al., 2016). 

The nickel exposures in the water ecosystem causes severe 

damages to gill tissues, such as necrosis, epithelial thickening, and 

lamellar fusion. In Mugil cephalus, these injuries have been shown to 

increase ion permeability and reduce osmoregulatory capacity (Jasim et 

al., 2022). Furthermore, the disrupted structure of cellular membranes 

is leading to increased permeability and accelerates ion losses due to 

the compromised integrity of the membrane structure (Al-Attar, 2007). 

It can also trigger an increase in oxidative stress and the activation of 

metabolic adaptation mechanisms in fish. The effects of nickel on ion 

transport raise energy consumption and exacerbate metabolic stress. 

Specifically, the imbalance between ATP production and utilization 

limits the fish’s capacity for adaptation (Gashkina, 2024). It has been 

reported that nickel exposure elevates cortisol and glucose levels, 

reflecting the fish’s effort to regulate homeostasis (Jasim et al., 2022). 

 

Protein Metabolism 

Nickel exposure impacts some biochemical processes in aquatic 

vertebrates, including protein synthesis, enzyme activities, cellular 

protein stability, and amino acid metabolism. The nickel lead to 

temporarily reduce total protein (TP), albumin (Alb), and globulin 

(Glb) levels in C. carpio species (Bozorgzadeh et al., 2023). It is 

suggested in the study that low-level nickel may increase protease 

activity, leading to a rise in free amino acid levels. Cellular damage in 

gill tissues, in particular, has been associated with heightened 

proteolytic sensitivity like transcriptional changes in Perca flavescens, 

particularly in functional categories related to protein metabolism, 

translation processes, and ribosome biogenesis (Bougas et al., 2013). 

Changes in the transcription of ribosomal proteins indicate that nickel 

affects cellular protein synthesis mechanisms. It has also been reported 

to influence liver enzyme activity in carp by the nickel, increasing the 

activity of enzymes such as aspartate transaminase (AST) and alkaline 

phosphatase (ALP) (Bozorgzadeh et al., 2023). The histopathological 
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effects of nickel on liver tissue correlate with these metabolic 

disruptions. 

Even chronic, low-dose nickel exposure can weaken overall 

metabolic stability by disrupting protein metabolism. Studies on carp 

bone metabolism have revealed that nickel increases alkaline 

phosphatase (ALP) isoenzyme levels, thereby affecting mineral 

deposition (Bozorgzadeh et al., 2023). 

The nickel exposure exerts multifaceted effects on the protein 

metabolism of aquatic vertebrates. These effects disrupt both cellular 

protein synthesis and organism-level metabolic functions, leading to 

significant biochemical imbalances in aquatic ecosystems. 

 

Effects on Glycogen Metabolism 

Nickel exposure, in carp has been associated with reduced 

glycogen levels in the liver and muscles. This is reported to be due to 

increased glycogen breakdown and the utilization of glycogen reserves 

to meet energy requirements at the level (Cicik & Engin in 2005). 

Moreover, nickel also affects enzyme activities like glucose production 

inhibition through glucose 6 phosphatase suppression (Lokhand & 

Pawale 2023). 

Depleting the glycogen reserves may cause a shortage of energy 

in aquatic vertebrates. Some researchers have shown that fish exposed 

to heavy metal contamination may experience elevated blood sugar 

levels while seeing a decrease in glycogen levels, in their liver and 

muscles. This occurrence is seen as a sign of metabolic strain indicating 

a depletion of glycogen stores to fulfill the organism’s energy 

requirements (Javed & Usmani 2013).  

On the energy metabolism the nickel causing the changes at the 

levels in glycogen metabolism and disrupting the normal functioning of 

enzymes like insulin and glucagon. Activities of enzymes as glycogen 

phosphorylase and glycogen synthase are also suppressed by nickel 

exposures, resulting, in the breakdown of stored glycogen. 

Furthermore, research shows that heavy metals can influence the 

expression of genes related to glycogen metabolism disturbing the 

metabolic equilibrium (Liu et al., 2024). 
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CONCLUSION 

The harmful impacts of nickel, on vertebrates present a danger to 

the well-being of individual creatures and the balance of ecosystems at 

large according to this review that explored how nickel affects the 

physiological functions and biochemical processes in aquatic 

vertebrates including vital functions like breathing regulation and 

protein metabolism along, with glycogen storage.  

Nickel exposure can harm the epithelium of vertebrates by 

causing structural damage and hyperplasia leading to reduced oxygen 

uptake, in the respiration process and disrupting osmoregulation 

processes through the inhibition of ion transport enzymes, like Na⁊⁄ K⁊ 

ATPase This disruption not results in higher metabolic energy 

consumption. Also negatively impacts the balance of aquatic 

vertebrates’ internal environment.  

Nickels impact, on protein metabolism involves inhibiting protein 

synthesis which results in free amino acid levels and initiates the 

breakdown of proteins, in fish biology studies show it hinders growth 

reproduction and overall health in fish by affecting liver enzyme 

functions demonstrating metabolic toxicity caused by nickel exposure.  

The depletion of nickel disrupts glycogen reserves, in the body. 

Affects energy metabolism by reducing glycogen levels in the liver and 

muscles to meet energy requirements through glycogenesis process 

which deteriorates the fish health due, to oxidative stress and metabolic 

damages.  

Various studies reported the examination of tissue samples, from 

the gills, liver, kidneys and muscles reveals that nickel may be 

responsible for harming cells. Signs, like cell death, inflammation, 

swelling and cell deterioration, highlight how harmful this metal can 

be.  

Environmental elements could also impact the physiological 

impacts of nickel, on living organisms in ways There are certain 

factors, like water temperature, pH levels, hardness and salinity that 

could alter its harmful effects.  

Control of nickel pollution, from discharges and various other 

sources, should be carefully regulated. Need to monitoring nickel levels 

in water bodies and ensure that our align with environmental standards. 
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INTRODUCTION 

Many definitions have been made for heavy metals based on their 

density, atomic weight, chemical properties, or toxicity. Heavy metals 

are generally defined as metals or metalloids (semimetals) that have to 

do with possible toxicity or ecotoxicity and pollution. In actuality, metals 

with a density more than 5g/cm3 are referred to be heavy metals. In 

medicine, the definition of heavy metals is described as all metals that 

possess toxic properties, regardless of their atomic weight (Aslam et al., 

2011; Duffus et al., 2002).  

The degree to which heavy metals impact biological processes 

determines whether they are considered necessary or non-essential. 

Essential heavy metals are those that are involved in an enzymatic 

reaction, are part of vitamins and hormones, and are required in a specific 

concentration in the structure of the organism. This group of heavy 

metals (Fe, Cu, Zn, Ni, and Se) become toxic once they reach a specific 

quantity (1–10 ppm: parts per million). In contrast, non-essential heavy 

metals (Hg, Cd, and Pb) can exhibit toxic effects even at very low 

concentrations (Andrede et al., 2017; Kim et al., 2019).  

Due to rapid population growth and industrialization, the level of 

toxic heavy metals, especially in aquatic environments, has increased in 

recent years. Heavy metals, which constitute a part of the pollutants, 

along with metal compounds and various minerals, show widespread 

distribution in lakes, rivers, bays, and oceans, as well as in their 

sediments. Heavy metals cannot be easily eliminated in nature and can 

remain in the receiving environment for a long period without breaking 

down. In this way, they enter the living body and are transferred to a 

higher-level organism through the food chain. They are ultimately 

transferred to the human body (Aras et al., 2017) (Figure 1). 
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Figure 1: Pathway and impacts of heavy metal contamination on aquatic ecosystems 

and human health (Vasilachi et al., 2023) 

 

The effects of heavy metals on the body are not solely dependent 

on the concentration of the heavy metal. At the same time, it also depends 

on the structure of the metal ion, its solubility value, chemical structure, 

redox and complex formation ability, the method of entry into the body, 

and the frequency of its presence in the environment. They cause 

disturbances in intracellular metabolic processes, exhibiting toxic effects 

(Gupta et al., 2016).  

The generation of reactive oxygen species, oxidative damage, and 

subsequent development of negative health effects are the general 

mechanisms of heavy metal toxicity (Fu et al., 2020). Heavy metals have 

harmful impacts on the central nervous system (CNS). The brain, being 

an organ that consumes a lot of oxygen, has a high potential for the 

production of free radicals and reactive oxygen species. Reactive oxygen 

species play a significant role in neurodegeneration by targeting various 

biomolecules such as DNA, RNA, lipids, and proteins within nerve cells, 

as well as a wide range of processes like nucleic acid oxidation and lipid 

peroxidation, thereby altering the function of biomolecules (Singh et al., 

2019). Additional conditions brought on by toxicity include autoimmune 

diseases (such as rheumatism, Crohn's disease, ulcerative colitis, etc.), 
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neurological disorders (such as depression, migraine, Alzheimer's 

disease, and Parkinson's disease), organic diseases (such as kidney 

disease, allergies, eczema, and asthma), and mitochondrial damage and 

apoptosis induction. The majority of the health issues brought on by 

heavy metals are malignancies or chronic illnesses that call for 

sophisticated diagnostic and therapeutic approaches (Figure 2). 

 

 
Figure 2: Intracellular effects of heavy metals (Özbolat and Tuli, 2016) 

 

Heavy metal toxicity's biochemical mechanism 

Heavy metals that enter the body through food or water become 

acidified in the acidic environment of the stomach. In this environment, 

they convert into various oxidation states (e.g., Zn²⁺, Cd²⁺, Pb²⁺, As²⁺, 

As³⁺, Ag⁺, Hg²⁺) and easily interact with structures such as proteins and 

enzymes, forming strong and stable bonds. Thiol groups, like the SH 

group of cysteine and the SCH₃ group of methionine, are the functional 

groups that heavy metals most commonly target (Figure 3). 
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Figure 3: Reactions of heavy metals with sulphydryl groups of proteins or enzymes 

(Engwa et al., 2019) 

 

Certain enzymes can use proteins bound to heavy metals as 

substrates. In these situations, the protein that is bound to the heavy metal 

forms an enzyme-substrate complex with the enzyme and is unable to 

take up another substrate until it is released. Consequently, the heavy 

metal stays embedded in the tissue because the enzyme is inhibited, 

preventing the formation of the substrate's product. This condition causes 

the body to malfunction, become aberrant, and sustain damage. Cell 

damage and oxidative stress are exacerbated when thiol transferases are 

inhibited. Protein folding can also be inhibited by heavy metals. 

Chemically denatured proteins cannot refold when exposed to heavy 

metals as arsenic, cadmium, lead, and mercury. It has been noted that 

proteins misfold when exposed to heavy metals, and that misfolded 

proteins cannot be fixed by EDTA chelators or reduced glutathione. 

Mercury, cadmium, and lead are the elements that hinder protein folding 

the most effectively (Duruibe et al., 2007). 

 

Heavy Metals 

Mercury (Hg) 

It is a heavy metal derived from the Latin word "hydragyros," 

meaning liquid silver, and exists in a liquid state at room temperature 

(Clarkson et al., 2003). The toxicity of mercury varies depending on its 

chemical form. Mercury exists in three forms: metallic or elemental, 

inorganic, and organic (methyl mercury (MeHg), ethyl mercury, and 
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phenyl mercury). MeHg is an element that has not formed compounds 

with other elements. It exists in a liquid metal state, does not dissolve in 

water, but can evaporate in quite toxic amounts at room temperature, and 

is excreted from the body very slowly (Gupta et al., 2003). 

High levels of MeHg accumulate in fish and seafood. Especially 

large predatory fish (for example, swordfish, tuna) carry a mercury load 

and eventually pass it on to the human body (Crinnion, 2000). Hg is 

important for humans because it is a heavy metal with a high potential to 

cause neurotoxicity (Chin-Chan, 2015). Mercury swiftly passes through 

cell membranes, including the placental and blood-brain barriers, once it 

enters the bloodstream (Crinnion, 2000). The CNS is the main target 

organ of MeHg toxicity. MeHg is transferred from the mother to the fetus 

and reaches the fetus's brain (Farina et al., 2013). It can also cross the 

placenta and affect breast milk (Akcan and Dursun, 2008). 

 The neurological condition known as "Minamata disease" was 

initially identified in May 1956 in the city of Minamata, which is situated 

in the southwest part of Kyushu Island, Japan. It is caused by mercury 

poisoning, which happens to people who consume fish and shellfish 

contaminated with mercury from the wastewater of a chemical plant. 

Ataxia, hand and foot numbness, overall muscular weakness, peripheral 

vision loss, and speech and hearing impairment are some of the 

symptoms. In severe cases, paralysis, coma, and death occur a few weeks 

after the onset of symptoms. Impacting fetuses and producing symptoms 

resembling those of cerebral palsy, extensive brain damage, and 

microcephaly (Harada, 1995). 

 Mercury has been found to selectively concentrate in the granular 

layer of the cerebellum, the sensory neurons of the dorsal root ganglia, 

the amygdala, the hippocampus, and the medial basal nuclei, all of which 

are involved in memory processes in the human brain (Crinnion, 2000). 

MeHg causes an increase in extracellular glutamate levels by inhibiting 

glutamate uptake in astrocytes and inducing glutamate release. Excessive 

glutamate causes an excessive increase in intracellular Ca+2 

concentration and consequently neurotoxicity through the overactivation 

of glutamate's N-methyl-D-aspartate (NMDA) receptors. Excessive 

intracellular Ca+2 activates neuronal nitric oxide synthase, which causes 
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mitochondria to collapse and nitric oxide levels to rise. MeHg has an 

impact on the electron transport chain in the mitochondria and increases 

the amount of ROS produced (Farina, et al., 2013).  

 

Lead (Pb)  

Lead is a neurotoxic and a heavy metal that has been utilized for 

thousands of years. It does not take part in biochemical reactions. At the 

same time, lead, which is widely used industrially, is found in both 

organic and inorganic forms. It is among the most dangerous heavy 

metals for human health. Inorganic lead is found in the atmosphere in 

particulate form, while organic lead is volatile and mostly mixes with 

food items and drinking water. For this reason, organic lead affects living 

organisms more than inorganic lead. Both its prevalence in industrial use 

and its widespread presence in environmental elements make lead an 

important exposure factor in terms of environmental and occupational 

health (Gülçin et al., 2002).   

Lead enters the food chain through algae and small aquatic 

organisms. The major absorption pathways are the gastrointestinal tract 

and the respiratory system. Absorption from the gastrointestinal tract 

varies with age; while 10% of orally ingested lead is absorbed in adults, 

this rate is 40% in children. In addition, lead absorption can also occur 

through the skin. 85-90% of the lead that enters the human body binds to 

the membrane of erythrocytes in the blood, 1% remains free, and the rest 

is transported bound to albumin. 90% of the lead particles taken in 

through inhalation are absorbed. Lead, which is eliminated from the body 

very slowly, is expelled from the blood in 30 days and from the bones in 

27 years. If there is long-term exposure to lead, it is stored in the body. 

It primarily distributes in soft tissues and parenchymal organs. The 

primary sites of deposition are bones and teeth. Approximately 94% of 

the accumulated lead in adults is found in teeth and bones (Erickson and 

Thompson, 2005).  

Since lead is a divalent cation, it has a high capacity to bind to 

sulfhydryl groups, and the products it forms inhibit enzymes and 

proteins. Lead also disrupts the activity of pyrimidine 5'-nucleotidase 

and increases the levels of pyrimidine nucleotides within erythrocytes. 
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This situation prevents the maturation of erythrocyte elements, reduces 

the number of erythrocytes, and results in anemia. This outcome is one 

of the best-known toxic effects of lead. Abnormal concentrations of hem 

precursors appear in the blood and urine. Lead inhibits the two key 

enzymes of heme biosynthesis: the δ-aminolevulinic acid dehydratase 

enzyme that catalyzes the "ALA → porphobilinogen" step and the 

ferrochelatase enzyme that catalyzes the "protoporphyrin IX → heme" 

step (Figure 4).  Inhibition of the δ‐aminolevulinic acid dehydratase 

enzyme (ALA dehydratase) causes an increase in circulating ALA levels 

and reduces the release of Gamma Amino Butyric Acid (GABA) from 

the central nervous system. When the Pb level in whole blood exceeds 

20 µg/dl, ALA dehydratase activity is inhibited by 50%. Lead shortens 

the lifespan of erythrocytes by disrupting the Na+/K+-ATPase pump and 

the membrane structure of erythrocytes (Alfven et al., 2002; Ercal et al., 

2001).  
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Figure 4: Steps of heme synthesis inhibition (Özbolat and Tuli, 2016) 

 

When evaluating lead toxicity, the susceptibility of the kidneys, 

cardiovascular system, and hematological system to lead is particularly 

crucial. Additionally, lead also affects the male and female reproductive 

systems. Lead easily passes from the mother's blood to the placenta and 

fetus, accumulates in the bones, and therefore, maternal exposure can 

cause the newborn to be affected by lead even years later. This exposure 

causes delays in cognitive development as well as embryonic organ 

development (Flora et al., 2012) (Figure 5). 
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Figure 5: Effects of blood lead concentration (Özbolat and Tuli, 2016) 

  

Copper (Cu) 

In both human and animal beings, it is a necessary trace element. 

There are copper-containing enzymes that act as redox catalysts 

(cytochrome oxidase, nitrate reductase) or oxygen transporters 

(hemocyanin). Copper can exist in three forms with valences Cuº, Cu+1, 

and Cu+2 (Kiaune and Singhasemanon, 2011). Copper is important for 

body functions and is especially a key component of hair, skin, bones, 

and some internal organs. Under normal circumstances, copper—which 

an adult human's average daily intake is between 50 and 120 mg—is an 

essential component of metabolic processes involving vitamins, fatty 

acids, and amino acids. As a biocatalyst in human metabolism, copper 

serves a variety of purposes and is present in the structure of 

metalloenzymes. Among the most well-known copper metalloenzymes 

are tyrosinase, amine oxidase, ascorbic acid oxidase, urate oxidase, 

superoxide dismutase, cytochrome c oxidase, and dopamine β-

hydroxylase. It is also essential for the body to properly use iron. Iron 

cannot attach to hemoglobin in the absence of copper. Every organ and 

tissue in the human body contains copper. Because it is both poisonous 
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and necessary, copper is absorbed from the small intestine and then 

dispersed throughout the body by loosely binding to amino acids and 

serum albumin. Ceruloplasmin is synthesized in parenchymal cells using 

copper that enters the liver as copper-albumin and copper-histidine 

complexes. According to Ranjan et al. (2006), ceruloplasmin and copper 

metalloprotein contain approximately 90% of copper is present in 

mammalian plasma. It builds up in algae and marine organisms with 

copper shells, where it enters the food chain. This metal has the ability 

to accumulate in the tissues of mammals and, when its concentration in 

the tissues reaches critical levels, exhibit hazardous consequences. It has 

been noted that exposure to this metal causes pathological alterations in 

a variety of tissues, most commonly the kidneys and liver. 

Hepatotoxicity, or liver injury, can result from copper's ability to harm 

liver cells. Additionally, it may result in liver tissue injury, inflammation, 

or edema (Linder, 2020). 

 

Arsenic (As) 

Since arsenic exhibits both metallic and non-metallic properties, it 

is chemically classified as a metalloid. Arsenic compounds can be 

classified as inorganic and organic. Arsenic compounds that do not 

contain carbon bonds are defined as inorganic arsenics, while those that 

do contain carbon bonds are known as organic arsenics. Inorganic arsenic 

species include arsenate and arsenite, while some of the organic species 

are methylated forms such as monomethyl arsenic acid and 

dimethylarsinic acid. Waters include four different forms of arsenic: 

dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), arsenite, 

and arsenate. The chemical structure of arsenic determines its toxicity; 

in general, soluble inorganic arsenic species are more harmful than 

organic ones (such MMA and DMA). Because organic arsenic is easily 

excreted from the body under normal conditions. In addition, arsenic 

types with large molecular structures, such as arsenobetaine and 

arsenocholine, are not toxic. Inorganic arsenic is 100 times more 

hazardous than organic arsenic, and arsenite is 60 times more deadly than 

arsenate (Jain and Ali, 2000; Mandal and Suzuki, 2002). 
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Arsenic enters the food chain through aquatic plants and plankton. 

It targets a wide range of functional groups in the body and exhibits 

different biological effects based on the tissue, dose, length of exposure, 

and metabolism. The most important mechanism in the occurrence of 

arsenic compound toxicity is the blockage of enzymes containing thiol 

groups in the organism. The highly reactive trivalent forms of arsenic 

bind to the sulfhydryl groups of many enzymes, such as DNA repair 

enzymes and antioxidant enzymes (thioredoxin reductase, glutathione 

peroxidase, etc.), thereby inhibiting these enzymes. Even at low doses, 

arsenic causes oxidative DNA damage and the formation of reactive 

oxygen and nitrogen species, resulting in lipid peroxidation. They 

combine with lipoic acid to inhibit pyruvic acid metabolism. However, 

an increasing number of experimental studies have shown that arsenic 

causes endocrine disorders, changes in cell cycle kinetics, epigenetic 

effects, and transcriptional changes (Muzaffar et al., 2023). 

 

Cadmium (Cd) 

Cadmium and its compounds can have various negative effects on 

human health. Mollusks, shellfish, and fish accumulate cadmium and 

enter the food chain. Because the human body is inadequate in excreting 

cadmium, the health effects of cadmium exposure are further increased. 

Cadmium is reabsorbed by the kidneys, which restricts its excretion. 

Short-term exposure to cadmium vapor can cause serious lung damage 

and irritation of the respiratory tract, while high doses of cadmium intake 

can affect the stomach, leading to vomiting and diarrhea. Long-term 

cadmium exposure leads to the accumulation of this metal in bones and 

lungs, which can cause damage to bones and lungs. Cadmium can disrupt 

bone mineralization, leading to health issues such as osteoporosis; 

studies conducted on animals and humans have shown that cadmium 

causes bone damage (Bernard, 2008).   

In Japan, cadmium released as industrial waste has gradually 

begun to accumulate in the soil, algae, and river organisms. This situation 

has led to local phytoplankton and algal species absorbing cadmium in 

high amounts. Cadmium has passed into fish through the food chain. 

Additionally, fish have biologically accumulated cadmium in their gills 
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through passive transport. Cadmium has caused negative effects in fish, 

leading to endocrine system disorders, impairing reproductive ability, 

and sometimes resulting in death. The local people, unaware of the 

dangers of cadmium, used the water from the Jinzū River to irrigate their 

rice fields. The prolonged exposure of these fields to cadmium caused 

the rice to become rapidly contaminated and toxic. When the local people 

consumed this rice and drank the same water, high cadmium body 

burdens were formed, leading to the emergence of "Itai-itai" disease. In 

the cadmium toxicity associated with this disease, it has been observed 

that the risk of bone fractures in women increased, along with a loss of 

bone density and a decrease in height (Kobayashi et al., 2009).  

Cadmium has high toxicity on the kidneys and can accumulate in 

the proximal tubules, leading to kidney dysfunction and kidney diseases. 

In addition, cadmium can cause imbalances in calcium metabolism, 

kidney stone formation, and hypercalciuria. The International Agency 

for Research on Cancer has designated cadmium as a Group 1 carcinogen 

in humans (Mudgal et al., 2010).  

Cadmium-induced carcinogenicity is associated with DNA either 

directly or indirectly. The direct relationship requires covalent bonding 

between cadmium and DNA, while the indirect relationship causes 

oxidative damage in DNA, an increase in cellular oxidants, and 

consequently an increase in free radicals. It is suggested that the indirect 

relationship is also through DNA repair mechanisms, DNA-protein, and 

DNA-amino acid cross-link formation. Cadmium is a soft metal and 

preferentially binds to sulfhydryl groups in proteins and DNA bases 

rather than DNA phosphates. The cellular toxicity of cadmium causes the 

inhibition of sulfhydryl-containing proteins and the induction of reactive 

oxygen species through Cd-DNA binding. Additionally, cadmium 

indirectly reduces antioxidant levels and an increase in intracellular 

hydrogen peroxide is observed. The increase in hydrogen peroxide 

catalyzes iron/copper-mediated redox reactions, the resulting free 

radicals cause DNA cross-linking, and trigger lipid peroxidation. It has 

not been observed that cadmium produces free radicals, but lipid 

peroxidation in tissues increased immediately after application (Rojas et 

al., 1999; Fang et al., 2001).  
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Casalino et al. have summed up the impacts of cadmium as 

follows: 2. Interaction with antioxidant enzymes, 1. Modification of 

membrane structure or function, 3. Change in thiol proteins; 4. Energy 

metabolism inhibition; 5. DNA structure modification; and 6. Stress gene 

expression induction and important involvement in certain enzymatic 

activity impacts (Casalino et al., 2002; Hossain and Huq, 2002).  

 

Nickel (Ni) 

It is a hard metal with a silvery-white color. Nickel compounds are 

insoluble in water. Its water-soluble salts are chloride, sulfate, and 

nitrate. In biological systems, nickel combines with deoxyribonucleic 

acid, proteins, peptides, amino acids, and adenosine triphosphate to 

produce complexes (Zamble, 2017). Figure 6 illustrates the direct and 

indirect in vivo damage caused by nickel. 

Among the main effects on human health are allergic contact 

dermatitis, respiratory system disorders, and carcinogenic effects. Long-

term nickel exposure, especially in individuals exposed to nickel 

compounds in industrial settings, can increase the risk of nasal, sinus, 

and lung cancer. Additionally, high levels of nickel exposure can 

adversely affect cardiovascular and kidney functions. (Das et al., 2008). 

 

Figure 6: The direct and indirect in vivo damage caused by nickel (Boğa, 2007) 
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Zinc (Zn) 

Zinc is a trace element that naturally occurs in soil, rocks, and 

aquatic environments. However, human activities such as mining, 

industrial operations, wastewater discharges, and fertilizer use can lead 

to increased zinc concentrations in aquatic ecosystems. This increase 

leads to the biological uptake of zinc by aquatic organisms. Especially 

aquatic organisms such as phytoplankton, zooplankton, crustaceans, and 

fish absorb zinc in its bioavailable forms. The transfer of zinc from 

aquatic organisms to humans occurs via the food chain. In this process, 

organisms at low trophic levels such as zinc, phytoplankton, and 

zooplankton are taken up. In this process, zinc is taken up by low trophic 

level organisms such as phytoplankton and zooplankton. Fish and 

shellfish at higher trophic levels accumulate the zinc load. The 

consumption of seafood leads to the transfer of zinc into the human body. 

Especially in areas with intense industrial pollution, this process can lead 

to zinc toxicity. One necessary trace element is zinc for the human body 

and plays an important role in processes such as the immune system, cell 

growth, wound healing, and DNA synthesis. However, when taken in 

excessive amounts, it can cause toxic effects. Symptoms such as nausea, 

vomiting, and diarrhea may be observed. Excessive zinc can weaken the 

immune system by inhibiting the absorption of other trace elements (such 

as copper). Prolonged high zinc exposure can lead to neurotoxic effects 

(Plum et al., 2010).  

 

Cobalt (Co) 

It is also crucial for living things' nourishment. The main 

component of vitamin B12 is cobalt. It is the most effective biocatalyst 

known to date. The transfer of cobalt from aquatic organisms to humans 

occurs through the consumption of these organisms. In its toxicity, it 

induces the cleavage of all bases in DNA, particularly inducing more 

Thymine instead of Guanine and Cytosine instead of Adenine. In the 

cobalt-oxygen complex, cobalt interacts with H2O2, O2, and OH-. When 

chelators are present, the formation of ROS is enhanced. Cobalt damages 

mitochondrial DNA in neuronally cells, according to recent research. 

(Plowman et al., 1991).  
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Chromium (Cr) 

It can be found in plants, animals, rocks, and soil. It can be a gas, 

a liquid, or a solid. In aqueous sediments, chromium compounds are 

quite persistent. It exists in a variety of states, including hexavalent, 

pentavalent, tetravalent, and divalent forms. The most stable forms are 

Cr (VI) and Cr (III), and the only thing that is really interesting is how 

they relate to human exposure. Compounds containing chromium (VI), 

including lead, strontium, zinc, and calcium chromates, are extremely 

harmful and carcinogenic. 

On the other hand, chromium (III), which is essential for glucose 

metabolism, is a dietary supplement that both humans and animals 

require. Humans exposed to high concentrations of chromium 

compounds may experience inhibition of the erythrocyte glutathione 

reductase enzyme, which lowers methemoglobin's ability to be converted 

to hemoglobin.  

Chromate chemicals can cause DNA damage through a variety of 

mechanisms, resulting in sister chromatid exchanges, chromosomal 

abnormalities, DNA adducts, and modifications to transcription and 

replication, according to the results of numerous in vitro and in vivo 

research (Costa and Klein, 2006). 
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INTRODUCTION 

Humanity has experienced two major phases of population 

expansion. The first phase occurred after the Paleolithic era, as the 

Neolithic agricultural revolution led to a dramatic population increase, 

reaching approximately 150 million by 1000 BCE. The second phase 

started with the Industrial Revolution when humanity stunned 

Malthusian factors (scarcity and diseases) by developments in industry, 

and due to that population growth rate is increased (Chu & Xu, 2024). 

This increment also led to an increase in the demands for resources to 

supply the needs of human populations. Consequently, the intervention 

of human in nature to meet the increasing demands is caused –and still 

causing- disruption to the ecological balance. Thereby, the self-

purification mechanisms of nature have become insufficient, which in 

turn resulted in environmental contamination/pollution (Zhou et al., 

2023a). 

It is well documented that pollution has several detrimental effects 

on all compartments of nature and all living beings, and therefore making 

it a global concern (Ukaogo et al., 2020). In general, environmental 

pollution is considered the presence of toxic chemicals and/or energy 

forms that are released or discharged into ecosystems by human 

activities, and disturbing ecosystems through alterations in the physical, 

chemical, and biological features of ecosystems (Özkara & Akyıl, 2018). 

According to Holdgate (1980) environmental pollution is a situation that 

occurs by introducing materials or energy to the environment due to 

human activity. Singh et al. (1991) defined environmental pollution as a 

change of environment’s condition from a stable (balanced) to unstable 

(imbalanced) system. Environmental pollution is associated with 

industrial and technological development that has magnified the release 

of pollutants, including toxic chemicals, heavy metals, nanoparticles, 

microplastic particles and exotic and invasive biological organisms, and 

physical agents such as heat and radiation into the environment (Ukaogo 

et al., 2020; Rai, 2016; Nassouhi et. al., 2018; Ergönül et al., 2021; Sazlı 

et al., 2022). 

Pollution can be classified based on the environmental 

compartment of effected such as air, water, or soil pollution. Similarly, 
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pollution can be named according to the type of pollutant (i.e., noise, 

radioactive, or thermal pollution). Among these compartments, pollution 

of air, water sources, and soil has direct implications for human health 

and environmental sustainability and therefore admitted as most 

significant types of pollution (Münzel et al., 2023). Water is a very good 

solvent and several chemicals including toxic substances are readily 

dissolved in water, and therefore can be carried for long distances from 

terrestrial habitats (both from point or non-point sources) to oceans 

(Munafò et al., 2005). Thus, water pollution is considered an important 

concern for ecosystem sustainability and human health (Du Plessis, 

2017; Hiranmai & Kamaraj, 2023).  

Water pollutants originate from both natural sources (volcanic 

eruptions, floods, etc.) and human activities (sewage, agricultural runoff, 

industrial waste, etc.) (Nasr et al., 2007). These contaminants include 

organic pollutants, pathogens, nutrients, agricultural runoff, suspended 

solids, thermal wastes, radioactive waste, and inorganic pollutants 

(Wasewar et al., 2020). Among these pollutants inorganic pollutants 

include an extensive range of substances; trace elements, heavy metals, 

inorganic salts, metal complexes, cyanides, and sulfates (Borah et al., 

2020). Heavy metals have several uses in various industries owing to 

their conductivity, catalytic activity, density, corrosion resistance, 

magnetic characteristics, biocidal effects, and alloy-forming capabilities 

(Briffa et al., 2020). However, heavy metals constitute a major hazard to 

all forms of living organisms and environmental quality (Nassouhi et al., 

2018). They are naturally found on Earth generally as sulfates, 

hydroxides, oxides, sulfides, phosphates, and silicates (Masindi & 

Muedi, 2018). The amount of heavy metals released into environment 

have increased during the last decades through natural events (such as 

wildfires, erosion, and volcanic activities), and human activities (i.e. 

agriculture, mining, and industrial operations) (Singh et al., 2022). 

Eventually, there are several documented instances indicating that heavy 

metals are distributed to diverse habitats, particularly aquatic 

ecosystems, during their extraction, utilization and disposal (Ali et al., 

2019; Vajargah, 2021). Unfortunately, heavy metals are persistent 

elements and they accumulate in the tissues of various organisms, and as 
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a result they have a tendency to increase in higher trophic levels through 

biomagnification (Ali et al., 2019). 

Based on their functions in living beings, heavy metals have 2 

broad groups; essential and non-essential heavy metals. Heavy metals 

such as iron, copper, cobalt, zinc, selenium, and manganese are required 

for the maintenance of an organism's physiological and biological 

functions and therefore named as essential heavy metals (FAO, 1996). 

Although, trace amounts of these metals have functions in living beings, 

they may exert toxic effects in higher concentrations (Das et al., 2019). 

For example, copper is a vital micronutrient for all organisms and has 

functions as a cofactor in numerous enzymes. However, at elevated 

concentrations in humans, it is associated with gastrointestinal disorders, 

Wilson's disease, as well as kidney and liver damage (Royer & Sharman, 

2023). On the other hand, deficiency of copper results in symptoms 

similar to anemia, neutropenia, and other health complications (Wazir & 

Ghobrial, 2017). Similarly, cobalt is a crucial element for living 

organisms, functioning as a primary component of vitamin B12 (Russel, 

2022). Excessive intake of cobalt is associated with peripheral 

neuropathy, cardiomyopathy, and hypothyroidism (Tower, 2010; 

Jelkmann, 2012).  

Elements like Arsenic (As), Cadmium (Cd), Lead (Pb), and 

Mercury (Hg) have no known functions in living beings and they exhibit 

toxic effects even at trace amounts (Tchounwou et al., 2012) and 

therefore considered non-essential heavy metals. Toxic effects of these 

metals on several organisms have been well documented in several 

scientific reports (Prozialeck et al., 2002; Gogoi et al., 2024). Non-

essential heavy metals can damage cell membrane integrity and alter the 

functions of organelles such as mitochondria, lysosome, endoplasmic 

reticulum, and nucleus. They may interact with DNA, enzymes, and 

proteins and lead to conformations that affect modulations in the cell 

cycle, ultimately leading to carcinogenesis and apoptosis (Gogoi et al., 

2024). Some heavy metals including As, Cd, Pb and Hg are highly toxic 

since they lead to formation of reactive oxygen species (ROS) and 

therefore result in oxidative stress in organisms (Lee et al., 2012; Zhu & 

Costa, 2020; Gogoi et al., 2024); and based on this, these heavy metals 
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are considered carcinogenic agents in human beings and animals (IARC, 

1993; USEPA, 2007).  

Surface runoff and running waters carry several pollutants 

including heavy metals dissolved in water to aquatic habitats from 

terrestrial habitats (Pintilie et al., 2007; Brodie et al., 2012; D’Avignon 

et al., 2022). Several reports are available demonstrating the heavy metal 

concentration in sediments and water samples from rivers worldwide. 

The recent research on the concentration of heavy metals present in water 

and sediment samples of some large rivers have been summarized in 

Table 1. 
 

Table1. Heavy metal concentrations in sediment and water samples from some large 

rivers worldwide. 

River 

name/Country 
Heavy metals Concentration  References 

Sediment (mg/kg) 

Congo River / 

Congo 

As 

Cd 

Co 

Cr 

Cu 

Hg 

Ni 

Pb 

Zn 

0.15-4.80  

0.02-6.55  

0.33-14.25  

3.08-95.49  

1.77-139.91 

0.02-4.92  

1.32-37.10  

2.36-200.89  

7.41-285.03  

Mata et al., 

2020 

Euphrates River/ 

Iraq 

Cd 

Cu 

Pb 

Zn 

1.29 ± 0.96 

67.52 ± 21.86 

63.23 ± 27.88 

156.15 ± 88.94 

Kadhum et al., 

2020 

Pearl River / USA 

As 

Co 

Cr 

Cu 

Pb 

Se 

U 

Zn 

2.3 ± 0.7 

4.0 ± 1.5  

19.1 ± 5.7  

14.0 ± 9.1  

29.6 ± 19.6  

0.2 ± 0.3  

1.6 ± 0.4  

49.0 ± 27.8  

Paul et al.,2021 

Yangtze River/ 

China 

As 

Cd 

Cu 

Hg 

Mn 

Ni 

8.97–33.86  

0.33–0.89  

13.94–37.00  

0.01–0.09  

724.7–1620.7  

26.11–33.95  

Li et al., 2020 
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Pb 

Zn 
16.89–41.76  

71.92–130.93 

Nile River / Egypt 

Cd 

Co 

Cr 

Cu 

Fe 

Mn 

Ni 

Pb 

Zn 

0.2-2.6  

31.7-79.1 

ND-8.5  

18.9-53.6 

8398-14119  

106.2-548.7  

5.2-40  

13.88-79.38 

14.5-143.6  

Goher et al., 

2021 

Arrecifes River / 

Argentina 

As 

Cd 

Co 

Cr 

Cu 

Fe 

Mn 

Ni 

Pb 

Zn 

4.93  

0.14  

10.4  

15.5  

19.1  

29100 

670  

10.4  

11.2  

45.9  

Peluso et al., 

2022 

Kızılırmak River / 

Türkiye 

As 

Cd 

Cr 

Cu 

Fe 

Hg 

Mn 

Ni 

Pb 

Zn 

15.8  

0.86  

212.3 

18.5  

30100 

0.44  

922  

121.9 

13.6  

52.5  

Cüce et al., 

2022 

Orange River / 

Namibia 

As 

Cr 

Cu 

Fe 

Mn 

Ni 

Pb 

Zn 

55-105  

99-290  

23-133  

14787-95464  

478-2211  

23-65  

4  

44-205 

Pitiya et 

al.,2022 

Rhine River / 

Germany 

Cd 

Cu 

Ni 

Pb 

Zn 

1.3 ± 0.5 

75 ± 38  

55 ± 12  

62 ± 10  

430 ± 210  

Klein et al., 

2022 

Danube River / 

Serbia 

As 

Cd 

Co 

15.05 ± 5.55 

2.75 ± 1.00  

18.05 ± 2.13 

Kašanin-

Grubin et al., 

2023 
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Cr 

Cu 

Ni 

Pb 

Zn 

14.24 ± 2.31  

98.79 ± 39.20 

82.17 ± 19.58 

91.45 ± 27.58 

353.91 ± 93.97 

Chía River / Peru 

Cu 

Cr 

Fe 

Mn 

Hg 

Mo 

Ni 

Pb 

V 

Zn 

8.8 ± 0.04  

11.57 ± 0.53 

8922.33 ± 114.61 

145.41 ± 0.55  

0.16 ± 0.01  

0.39 ± 0.03  

9.39 ± 0.55  

13.31 ± 0.05 

15.94 ± 0.04 

120.12 ± 1.86 

Custodio et al., 

2024 

Ganges River / India 

Cd 

Cr 

Cu 

Fe 

Ni 

Pb 

Zn 

0.479  

0.181  

0.284  

39.22  

0.512  

0.494  

1.071  

Debnath et al., 

2024 

Water (μg/L) 

Changjiang River/ 

China 

Cd 

Cu 

Ni 

Pb 

Zn 

0.89-1.21  

2.31–4.53 

0.85–1.44 

2.03–15.03 

1.79–13.67 

Li et al., 2020 

Mantaro River / Peru 

As 

Cu 

Fe 

Pb 

Zn 

21.10 ± 7.82 

14.60 ± 7.37 

1140 ± 1488.0 

9.50 ± 9.10  

58.30 ± 32.10  

Custodio et al., 

2020 

Nyamwamba River / 

Uganda 

Co 

Cu 

Pb 

Zn 

10-250  

140-800 

20-50  

20-80  

Wilber et al., 

2020 

Nile River /Egypt 

Cu 

Fe 

Mn 

Pb 

Zn 

20-213  

120-7290  

10-1040 

3-306  

15-526  

Ghannam, 

2021 

Arrecifes River / 

Argentina 

As 

Cd 

Co 

Cr 

Cu 

57.5  

0.1  

0.32  

0.6  

3.31  

Peluso et al., 

2022 
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Fe 

Mn 

Ni 

Pb 

Zn 

3.57  

0.95  

0.88  

0.24  

4.16  

Ganges River / India 

Ba 

Cu 

Fe 

Li 

Mn 

Zn 

44.3  

7.78  

151.4 

4.08  

16.7  

20.4  

Nazir et al., 

2022 

Grand River / 

Canada 

Al 

Cd 

Co 

Cr 

Cu 

Fe 

Li 

Mn 

Mo 

Ni 

Pb 

U 

V 

Zn 

1-24  

0.01-0.8  

0.1-3.6  

0.08-2.7  

0.6-4.7  

5.4-39  

0.1-5.3  

1.2-17  

0.1-14  

0.2-9.3  

0.2-2.2  

0.5-0.8  

0.3-5.9  

1.6-19  

Pinter, 2022 

Kızılırmak River / 

Türkiye 

Al 

Ag 

As 

B 

Ba 

Cd 

Cr 

Co 

Cu 

Fe 

Hg 

Mn 

Ni 

Pb 

Zn 

837.6 

0.6 

3.1 

342.5 

71.5 

0.014  

3.9 

0.8 

5.2 

788.9 

0.032 

47.2 

5.2 

0.7 

10.14 

Üstün Odabaşı 

& Ceylan, 2023 

Niger River / Nigeria 

Cd 

Ni 

Pb 

Zn 

3-6 

2-60  

222-412 

83-410 

Ekpe et al., 

2023 

Volga River / Russia 

Al 

As 

B 

5.6 ± 3.4  

1.9 ± 0.6  

72 ± 29  

Shinkareva et 

al., 2023 
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Cu 

Li 

Mn 

Mo 

Ni 

Pb 

U 

V 

Zn 

1.9 ± 2.4  

8.5 ± 2.5  

29 ± 43  

0.8 ± 0.2  

1.7 ± 0.8  

0.3 ± 0.2  

0.6 ± 0.4  

1.4 ± 0.5  

8.5 ± 4.9  

Tocantins River / 

Brazil 

Al 

Cu 

Fe 

Hg 

690 

50 

460 

0.2 

Acioly et al., 

2024 

 

Among heavy metals, As, Cd, Cr, Hg, and Pb are classified as non-

threshold toxic elements and their concentrations in freshwaters have 

increased over the last decades (Kumar et al., 2019; Kumar et al., 2023; 

Soetan et al., 2024). Non-threshold elements have toxic effects on all 

forms of life even at trace amounts (Balali-Mood et al., 2021). As, Cd, 

Cr, Hg, and Pb are among the most hazardous elements and reported as 

the priority contaminants by ATSDR (2024). Similarly, according to 

WHO As, Cd, and Cr (VI) are Group 1 carcinogens, while Pb and Hg are 

considered Group 2A and 2B carcinogens, respectively (Briffa et al., 

2020). These metals have a high capacity to accumulate in various tissues 

of several organisms and have a high tendency for biomagnification 

through the aquatic food webs, which in turn create a serious risk for 

global environmental quality and human health. Therefore, in this study 

we focused on the effects of As, Cd, Cr, Hg, and Pb exposure on aquatic 

organisms.  

ARSENIC 

Arsenic (As) is a non-metalic element (atomic number: 33) found 

in nature with a high mobility and toxicity (Jomova et al., 2011). Arsenic 

metalloids are divided into 2 groups; organic and inorganic forms. The 

arsenide form has a high solubility, and it is the most common form 

observed in aquatic habitats (Mudhoo et al., 2011).  

Arsenic have several uses in agricultural activities (in pesticide 

formulations), wood industry (as a wood preservative), and metalworks 
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(as an alloying agent) and production of semiconductors. Arsenic 

emissions have increased due to improper disposal of wastes 

contaminated with As and also processing and combustion of fossil fuels 

like coal (Singh et al., 2022). Besides, natural processes such as volcanic 

activity, erosion, and geothermal activities have an important role in As 

pollution (Tchounwou et al., 2012). After its release into the 

environment, it quickly interacts with water, soil, and sediments. The 

mobility and bioavailability of this heavy metal is regulated by pH, redox 

conditions, and concentration of other ions present in the media (Bissen 

& Frimmel, 2003).  

Arsenic pollution presents significant threats to human and 

environmental health. Prolonged exposure to arsenic in humans through 

consumption of water or food can result in carcinogenesis, including 

bladder, lung, liver, and skin cancers (Briffa et al., 2020). Exposure to 

arsenic may also lead to cardiovascular diseases, diabetes, neurotoxicity, 

and developmental complications (Singh & Sharma, 2022). Arsenic 

affects several biological activities of living organisms, probably due to 

oxidative stress and bioaccumulation (Byeon et al., 2021; Ghosh et al., 

2022). The results of the recent experimental studies indicating the toxic 

effects of As exposure on several freshwater organisms are summarized 

in Table 2. 

 

Table 2. Toxic effects of Arsenic (As) exposure on some aquatic organisms 

Species Exposure 

concentration 

and duration  

Effects  References 

Algae 

Chlorella 

pyrenoidosa 

50 mg/L – 16 

days 

Decrease in biomass. Podder & 

Majumder, 

2016 

Nostoc muscorum 50, 100 and 

150 mM – 4 

days 

Reduction of chlorophyll a, 

carotenoids, and phycocyanin 

content. Increase in 

respiratory rate, SOD, CAT 

and GST activity.  

Patel et 

al.,2018 

Chlamydomonas 

acidophila  

0.1 and 20 

mM – 24 

hours 

Increase of hydroethidine 

fluorescence. Disruption in 

mitochondria, stigma and 

thylakoids. Overexpression 

Díaz et al., 

2020 
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of CaPCS2 gene. 

 

Invertebrates 

Asellus aquaticus 80 µg/L – 7 

days 

Increase in metallothionein 

level. 

Bouskill et 

al., 2006 

Daphnia magna 49 µg/L – 2 

days 

Alterations in alanine and 

lysine levels. 

Nagato et 

al., 2013 

Hyalella 

curvispina 

0, 0.5, 1 or 1.5 

mg/L – 4 days 

Decrease in ChE and GST 

activity.  

Kirilovsky 

et al., 2022 

Fish 

Channa punctata 6.936 mg/L – 

7 days 

Induction of micronuclei 

frequency. 

Yadav & 

Trivedi, 

2009 

Gobiocypris rarus 

26-77 

µg/(g.dm) – 

30 days 

Reduction in growth rate and 

feeding ratio, food conversion 

efficiency. Liver cell anomaly. 

Erickson et 

al., 2010 

Catla catla 20.41 and 

2.041 – 4 and 

35 days 

Increase in hematocrit content, 

white blood cell counts, GPT 

and GOT level. Decrease in 

plasma protein level, and LDH 

activity.  

Lavanya et 

al., 2011 

Labeo rohita 

Cirrhina mrigala 

Catla catla 

Ctenopharyngodon 

idella 

0.05 and 5 

mg/L – 30 

days 

Induce DNA damage in 

erythrocytes.  

Kousar & 

Javed, 

2014 

Danio rerio 50 µg/L – 90 

days 

Increase in ROS, MDA, and 

CD levels. Increased mRNA 

level of nuclear factor 

(erythroid-derived 2)-like 2 

(Nrf2). mRNA expression of 

glutathione peroxidase 

(Gpx1), CAT, manganese 

superoxide dismutase, 

copper/zinc superoxide 

dismutase and cytochrome c 

oxidase1 (Cox1) were up 

regulated. 

Sarkar et 

al., 2014 

Heteropneustes 

fossilis 

1,75 mg/L, 30 

days 

Decrease in glycogen 

concentration. Alteration in 

activities of glycogen 

metabolic enzymes and 

glycolytic enzymes. 

Tariang et 

al., 2019 

CAT: Catalase, CD: conjugated diene, ChE: Cholinesterase, GOT: Glutamic 

oxaloacetic transaminase, GPT: Glutamic-pyruvic transaminase, GST: Glutathione S-

transferases, LDH: Lactate dehydrogenase, MDA: Malondialdehyde, ROS: Reactive 

Oxygen species, SOD: Superoxide dismutase 
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CADMIUM 

Cadmium (atomic number: 48) is a smooth, light grey metal 

classified in Group XII of the periodic table, exhibiting physical and 

chemical similarities with zinc and mercury. It is pliable, ductile, and 

predominantly displays a 2+-oxidation state in its compounds. It has a 

low water solubility. It rapidly oxidizes to cadmium oxide (CdO) when 

exposed to air. Cadmium can be found as cadmium chloride, cadmium 

sulfate, and cadmium nitrate through reactions with HCl, HNO3 and 

H2SO4, respectively. This non-essential heavy metal has been 

categorized as a Group 1 carcinogen (IARC, 1993). 

Cadmium is used in various factors as a stabilizer, ingredient, and 

pigment in PVC manufactures, Ni-Cd batteries, and paints. Cadmium’s 

corrosion resistance characteristics offer advantages to its use in 

borosilicate glass, lamps, solar panels, and infrared optical devices 

(Karunakaran & Dhanalakshmi, 2009). Environmental cadmium 

concentrations have increased because of both natural processes (such as 

volcanic activities, erosion, and big forest fires) and anthropogenic 

activities (such as mining, fossil fuel burning, and use of phosphate 

fertilizers) (Casado et al., 2008). In addition, cadmium contaminated 

wastes are frequently associated to non-ferrous metal smelting and 

electronic waste recycling. 

The discharge of cadmium into the environment presents 

considerable hazards to both people and environmental health. In human 

beings, cadmium exposure predominantly occurs through inhalation and, 

to a lesser degree, ingestion. Upon entering the body, it binds to white 

blood cells and albumin, accumulates in the intestines, kidneys, and, 

liver, with a gradual elimination by urine, and breast milk (Satarug, 2018, 

Tinkov et al., 2018). Prolonged exposure may lead to damage in kidney 

and liver cells, edema in lungs, alterations in testis functions, 

osteomalacia, and corruption in the adrenal glands and hematological 

systems. Cadmium can also affect epigenetic systems, including DNA 

methylation, histone modification, and microRNA production, which 

govern gene activity and facilitate carcinogenesis. It may result in 

oxidative damage in DNA (both cellular and mitochondrial), proteins, 

and lipids through ROS production and may alter ATP synthesis 
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(Amamou, 2015). The results of the recent experimental studies 

indicating the toxic effects of Cd exposure on several freshwater 

organisms are summarized in Table 3. 

 

Table 3. Toxic effects of Cadmium (Cd) exposure on some aquatic organisms  

Species Exposure 

concentration 

and duration  

Effects  References 

Algae 

Chlorococcum sp. 0.1-200 mg/L – 

10 days 

Decrease in growth rate, chl-

a and chl-b concentration. 

Thickening of the cell wall. 

Qiu et al., 

2006 

Chlorella vulgaris 0.11 and 0.22 

mg/L – 2 days 

Decreases in growth rate, 

chlorophyll content, and 

mRNA expression of psbA 

and rbcL genes. Increase in 

ROS production and 

transcription of the psbB 

gene. 

 

Qian et al., 

2009 

Scenedesmus 

obliquus 

0.3 mg/L – 7 

days 

Decrease in the growth rate. Butler, 2012 

Microcystis 

aeruginosa 

0.01-0.4 mg/L – 

4 days 

Decrease in 

phycocyanobilin and 

chlorophyll content, increase 

in malondialdehyde, 

superoxide dismutase, CAT, 

and peroxidase activities. 

Qian et al., 

2012 

Invertebrates 

Potomida 

littoralis 

0.08, 0.09, 0.1, 

0,25 mg/L – 2 

hours 

Decrease in active filtration 

rate. 

Mouabad et 

al., 2001 

Procambarus 

clarkii 

0.01 and 0.03 

mg/L -21 days 

Damage to gill epithelial 

cells and an increase in 

metallothionein levels. 

Martín-Díaz 

et al., 2006 

Daphnia magna 0,06, 18, 100 

mg/L– 21 days  

Downregulation of the 

expression of glucanase, 

peptidase, and fatty acid 

binding proteins, 

vitellogenin, lectin, and β-

glucan binding proteins. 

Poynton et 

al., 2008 

Sinopotamon 

henanense 

0.71, 1.43, 2.86 

mg/L – 21 days 

Decline in oxygen 

consumption, 

oxyhemocyanin levels, and 

Xuan et al., 

2013 
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cytochrome c oxidase (cco) 

expression levels. 

Gammarus pulex 
3.4, 6 µg/L- 10 

days 

Reduction in lipid and 

glycogen content, protein 

concentration. Increase 

MDA level, and GSH 

concentration. 

Vellinger et 

al., 2013 

Hyalella azteca 0,0012 mg/L – 1 

day 

Increase in the expression 

Cnc, heat shock protein 

(Hsp90), DNA repair protein 

(Rad51), and ABC 

transporter proteins (Mrp4). 

Gott, 2016 

Fish 

Carassius gibelio 

Corydoras paleatus  

Cyprinus carpio 

0.005 and 0.1 

mg/L – 21 days 

Micronuclei formation in 

gill and liver cells 

Cavas et al., 

2005 

Oreochromis 

niloticus 

0.56, 1.12 and 

2.24 mg/L – 14 

days 

Decrease in glutathione and 

metallothionein levels. 

Atlı & Canlı 

2008 

Perca fluviatilis 0.2 mg/L – 14 

days 

Decline in leukocyte counts 

in the liver, kidneys, and 

spleen. 

Zabotkina et 

al., 2009 

Clarias lazera 0.07 and 0.17 

mg/L 

Decrease in the 

hepatosomatic index. 

 

Habib & 

Samah, 

2013 

Gobiocypris rarus 

0.002, 0.02, and 

0.2 mg/L – 3 

days 

Increase in malformations, 

and transcription of hsp70, 

vezf1, mt and cyp1a genes. 

decrease in SOD, MDA, 

CAT, GSH and LDH 

activities. 

Zhu et al., 

2014 

CAT: catalase, chl-a: Chlorophyll a ,chl-b: Chlorophyll b, Cnc: nuclear transcription 

factor, GSH: Glutathione ,LDH: Lactate dehydrogenase, MDA: Malondialdehyde 

,SOD: Superoxide dismutase. 

 

CHROMIUM 

Chromium (Cr; atomic number 24) is a transition metal commonly 

used in alloy fabrication, electroplating, pigment synthesis, 

pharmaceuticals, and metal processing (Jeong et al., 2023). The wide 

scale use of Cr has induced considerable environmental pollution, 

particularly in freshwater habitats. Its primary sources are industrial 

wastes, electroplating, battery manufacturing, and uses in several 

fertilizer and pesticide formulations (Bakshi & Panigrahi, 2018). 
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Chromium can be found in different oxidation states, with Cr (III) and 

Cr (VI) being the most consistent structures. Cr (III) has a limited 

toxicity, but Cr (VI) (frequently found as chromate; CrO₄²⁻ and 

dichromate; Cr₂O₇²⁻), is extremely mobile, reactive, and toxic. These 

characteristics enable Cr (VI) a significant environmental contaminant 

and an important problem for ecological systems (Bakshi, 2016). 

Inhalation, ingestion, and direct contact are the possible uptake 

mechanisms of chromium (VI) uptake in humans. The high accumulative 

capacity and bioavailability of Cr (VI) cause several alterations in living 

organisms, such as anemia, immunological suppression, DNA damage, 

malfunctions in osmoregulation, oxidative stress, and cellular 

dysfunction. In addition, long-term exposure to Cr (VI) may lead to 

damage in lung, kidney and liver cells, and ultimately leading to lung, 

liver, and kidney cancers (Briffa et al., 2020). In addition, Cr (VI) affects 

the microbial flora of aquatic sediments, decreasing microbial diversity 

and altering the general stability of the aquatic habitats (Velma et al., 

2009; Bakshi & Panigrahi, 2018). The results of the recent experimental 

studies indicating the toxic effects of Cr exposure on several freshwater 

organisms are summarized in Table 4. 

 

Table 4. Toxic effects of Chromium (Cr) exposure on some aquatic organisms  

Species Exposure 

concentration 

and duration  

Effects  References 

Algae 

Dictyosphaerium 

chlorelloides 

0.1, 0.5, 1, 2, 5, 

and 10 mg/L – 3 

days 

Inhibition in growth and 

PSII activity. 

Sánchez-f 

ortún et al., 

2009 

Monoraphidium 

convolutum 

0.1, 0.5, 1, 5, 

and 10 mg/L 

Increase in GR, and APX 

activity. Decrease in electron 

transfer rate. 

Takami et 

al., 2012 

Chlorella 

variabilis 

446, and 942 

µM – 12, 24, 

and 48 hours 

Decrease in chl (a+b), ß 

carotenoid/chl (a+b) levels, 

and electron transport rate. 

Zsiros et al., 

2020 

Chlamydomonas 

reinhardtii 

20, 40, 60, and 

80 µM – 6 days 

Inhibition in growth, and 

PSII. Morphological 

changes. Increase in ROS 

level. 

Zhang et al., 

2021 
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Chlorella vulgaris 1, 3, 6, and 9 

mg/L – 4 days 

Inhibition of chl- a synthesis, 

and decrease in dry weight. 

Decrease in Fv/Fm, and PSII 

activity. 

Zhou et al., 

2023b 

Invertebrates 

Barytelphusa 

guerini 

11.3, and 15,62 

mg/L, 30, 60, 

and 90 days 

Decrease of glycogen, and 

glucose content in gill and 

hepatopancreas.   

Sridevi & 

Reddy, 

2000 

Pseudosida 

ramosa 

0.3, 0.6, 1, 3, 

and μg/L – 21 

days 

Decrease in fertility and 

fecundity rate. 

Freitas & 

Rocha, 2014 

Caenorhabditis 

elegans 

1, 10, 100, and 

1000 μM – 1 

day 

Increase in ROS level. 

Upregulation in expression 

of actin, sod-3, hsp-16.2, and 

gst-4. 

Saikia et al., 

2013 

Geloina coaxans 4.34, 8.69, 

17.38, and 

34.76 mg/L – 1, 

2, and 3 days 

Histological disruption. 

Increase in the MDA 

content. Alterations in GST 

and CAT activity.  

Guo et al., 

2020 

Daphnia carinata 0.05, 0.1, 0.2 

mg/L – 21 days 

Decrease in reproductive 

rate and body length. 

Zhou et al., 

2021 

Fish 

Oncorhynchus 

mykiss 

Ictalurus 

punctatus 

Lepomis 

macrochirus 

0.5, 1, 2, and 4 

mg/L – 5, 7, and 

10 days 

Increase in DPX levels in 

erythrocytes. 

Kuykendall 

et al., 2009 

Channa punctatus 

 

2, and 4 mg/L – 

30, and 60 days 

Lamellar fusion, edema, and 

hyperplasia in gill. 

Hypertrophy in epithelial, 

tissue in kidney. 

Vacuolization, cytolysis, 

and shrinkage of hepatocytes 

in liver. Decrease in cortisol 

level. 

Mishra & 

Mohanty, 

2009 

Oreochromis 

niloticus 

0.003 mg/L - 30 

days 

Increase in ALT and AST 

activities. 

Öner et al., 

2009 

Danio rerio 100, 500, 1000, 

and 5000 mg/L 

– 1, and 2 days 

Decrease in swimming 

activity. 

Bichara et 

al., 2014 

ALT: alanine transaminase, AST: aspartate aminotransferase, APX: Ascorbate 

peroxidase, CAT: catalase, chl: chlorophyll, DPX: DNA-protein cross-links, Fm: 

maximum fluorescence, Fv: variable fluorescence, GR: Glutathione reductase, GST: 

glutathione S-transferases, MDA: malondialdehyde, ROS: reactive oxygen species, 

ФPSII: quantum yield of photosystem II 
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LEAD 

Lead (Pb; atomic number 82) is an element with a distinctive blue-

white color; and having a high corrosion resistance (Tchounwou et al., 

2012). It is among the most ancient metals used by humanity and is 

predominantly found in the Earth’s crust. Pb exists in several mineral 

forms, including lead carbonate (PbCO₃) and lead oxide (PbO). Lead 

mainly exists in two oxidation states: Pb²⁺ (lead (II)) and Pb⁴⁺ (lead (IV)), 

while Pb²⁺ being the more stable and widespread form in environmental 

pollution (Holecy ve Mousavi, 2012).  

Historically, Pb was utilized in the manufacture of pipes, paints, 

and gasoline; however, its application in many of these products has been 

limited due to its harmful effects. But it is still widely used in the 

manufacture of lead containing batteries, and in radiation shielding. It is 

also utilized in soldering, and production of some alloys (Tchounwou et 

al., 2012).  

Lead is considered a significant threat to environmental quality and 

to human health. Both natural events like volcanic explosions and rock 

weathering or tectonic activities, and several human activities (such as 

mining, extraction, metal plating, and the disposal of lead-containing 

goods) are responsible for the release of lead contaminated wastes into 

environment. The utilization of lead in battery production, plumbing, and 

electronics seems to be most important source of lead pollution. Lead 

pollution also arises from the incorrect disposal of lead-based products 

and emissions from leaded gasoline (Singh et al., 2022). Lead may 

remain in the environment for prolonged durations after discharge, 

especially in soil and sediments, where it forms a strong bond with both 

organic and inorganic substances, thereby limiting its mobility in certain 

circumstances.  

In aquatic ecosystems, lead interferes with biochemical and 

physiological functions of aquatic organisms. Lead exposure may reduce 

enzyme activity, primarily by interacting with thiol groups, resulting in 

a series of metabolic disturbances. Lead exposure may also cause 

behavioral alterations, and reproductive deficiencies in fish and other 

aquatic creatures. Lead accumulates in the tissues of organisms, resulting 

in chronic toxicity and threaten animals at higher trophic levels (Lee et 
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al., 2019). Moreover, lead adversely affects microbial communities in 

sediments (George & Wan, 2019).  

Lead uptake in humans occurs through consumption of 

contaminated food or water, inhalation or air emissions, or cutaneous 

exposure after direct contact. Upon absorption, lead accumulates in 

bones, kidneys, and soft tissues, where it imitates calcium and disrupts 

vital biological functions. Prolonged exposure to lead may end up with 

neurological deficits, renal injury, cardiovascular disorders, and 

reproduction toxicity (Collin et al., 2022). The results of the recent 

experimental studies indicating the toxic effects of Pb exposure on 

several freshwater organisms are summarized in Table 5. 

 

Table 5. Toxic effects of Lead (Pb) exposure on some aquatic organisms 

Species Exposure 

concentration 

and duration  

Effects  References 

Algae 

Chlamydomonas 

reinhardtii  

80 µmol/L – 1, 

3, 5, and 7 days 

Decrease in cell counts, 

photochemical 

effectiveness of PSII and 

total chlorophyll volume. 

Increase in CAT, POD, 

SOD activities, and MDA 

content.  

Zheng et al., 

2020 

Scenedesmus sp. 

Chlorella sp. 

100, 150, 200 

mg/L – 10 days 

Decline in chlorophyll 

content. Increase in SOD, 

MDA, and CAT activity. 

Kashyap et al., 

2021 

Microcystis 

aeruginosa 

0.5 mg/L – 2, 4, 

6, and 8 days 

Decrease in chlorophyll 

content. Increase in CAT 

and SOD activity, and total 

protein content. 

Wang et al., 

2021 

Scenedesmus 

acutus 

Chlorella 

pyrenoidosa 

300, 350, 400, 

450, 500, 550, 

and 600 mg/L – 

1 to 4 days 

Decrease in electron 

transport rate, and 

photosynthetic pigment 

content. 

Purushanahalli 

Shivagangaiah 

et al., 2021 

Chlorella 

pyrenoidosa 

2 mg/L – 36 

hours 

Increase in MDA and 

soluble sugar levels, and 

SOD activity. Decrease in 

soluble protein levels, CAT 

and POD activity. Decline 

in cell density and chl-a. 

Yu et al.,2024 

Invertebrates 



AQUATIC ECOSYSTEMS IN THE ANTHROPOGENIC AGE | 64 

 

Gammarus 

fossarum 

5 μg/L – 10 

weeks 

Inhibition of respiratory and 

digestive enzymes. 

Lebrun & 

Gismondi, 

2020 

Proales similis 13, 25, 50, and 

100 μg/L – 5 

days 

Decline in population 

density. 

Rebolledo et 

al., 2021 

Macrobrachium 

dayanum 

29.12 mg/L – 

10, 20, and 30 

Alterations in haemocyte 

counts. 

Tiwari et al., 

2022 

Daphnia magna 

Daphnia similis 

50 µg/L – 4 

days 

Decrease in survival rates and 

decrease AChE activity. 

De Araujo et 

al., 2024 

Unio tigridis 100, 300, 500, 

700, 900 mg/L 

– 1, 2, 3, and 4 

days 

Increase in GST, CAT 

activities and MDA levels.  

Hanna & 

Shekha, 2024 

Fish 

Oreochromis 

niloticus 

100, 400, and 

800 μg/g dry 

Weight – 60 

days 

Decrease in lipase, amylase, 

and trypsin activities. 

Dai et al., 2009 

Danio rerio 

Poecilia 

reticulata 

500 μg/L – 1, 

and 3 days 

Reduction of monoamine 

oxidase. 

Senatori et al., 

2009 

Oreochromis 

niloticus 

0.05 mg/L – 4, 

and 21 days 

Increase in ALT and AST 

activities. Increase in the 

ALP and LDH activities. 

Fırat et al., 

2011 

Cyprinus carpio 1.5 mg/L – 14 

days 

Reductions in GSH level in 

liver and brain cells. 

Increase GST and GSH-Px 

activities, and MDA level in 

liver. 

Özkan-Yılmaz 

et al., 2014 

Channa argus 50, 200, and 

800 μg/L – 14 

and 28 days 

Decrease in CAT and GPX 

activities. Increase in PC 

and MDA contents, and 

relative expression of 

HSP60, HSP70, and 

HSP90. 

Zhao et al., 

2020 

ALT: alanine transaminase, AST: aspartate aminotransferase, AChE: 

Acetylcholinesterase, CAT: catalase, GSH: Glutathione, GSH-Px: Glutathione 

peroxidase, GST: glutathione S-transferases, MDA: Malondialdehyde, POD: 

Peroxidase, PSII: Photosystem II, SOD: Superoxide dismutase 

 

MERCURY 

Mercury (Hg; atomic number: 80) is a hazardous heavy metal 

found in several chemical forms, each reflecting distinct toxicity levels. 

The predominant forms of mercury in the ecosystem are Hg(II) (Hg²⁺), 
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Hg(I) (Hg⁺), elemental mercury (Hg0), and organic mercury compounds 

(such as methyl mercury). It is extensively used in mining, smelting, coal 

combustion, and the manufacture of batteries, thermometers, and 

electrical switches. Mercury is released into environment via industrial 

debris, sludge disposal, and the use of fungicides. A substantial fraction 

of mercury emissions originates from anthropogenic activities, 

comprising around one-third of total world discharges (Banjare & 

Markam, 2022).  

Mercury lacks any recognized physiological functions in 

organisms and is considered a non-essential metal (Martinez-Finley & 

Aschner, 2014). Mercury (II) is a highly reactive and soluble variant that 

accumulates in higher plants and aquatic species, leading to considerable 

environmental problems and health issues (Ali et al., 2019). Mercury 

undergoes a variety of modifications when it enters the environment, 

including biomethylation and reduction to elemental mercury through 

bacterial activities (Gonzalez-Raymat et al., 2017). These mechanisms 

facilitate the accumulation and biomagnification of mercury along the 

food chain.  

Mercury exposure impairs cellular functions by attaching to thiol 

groups, disrupting mitochondrial action, and eventually provoking 

oxidative stress (Wyatt et al., 2017). Mercury can also cause stomatal 

closure in plants, suppresses photosynthesis, and replaces magnesium in 

chlorophyll (Mei et al., 2021). Toxic effects of mercury in aquatic 

organisms includes inhibition of division in cells, chromosomal damage, 

reductions in growth rate and reproductive success (Crump & Trudeau, 

2009; Nirchio et al., 2019). Moreover, mercury influences microbial 

populations, and reduces microbial diversity and alters nutrient cycling 

within ecosystems (Zheng et al., 2022). 

Human beings are generally exposed to mercury through 

consumption of contaminated water sources and seafood or inhalation of 

contaminated air. Methyl mercury, the most dangerous variant of Hg, 

can easily pass through the blood-brain barrier and the placental barrier, 

and lead to impairment in nervous system, particularly in fetuses. 

Prolonged exposure to mercury may also cause to cognitive deficiencies, 

motor disorders, and developmental delays. Besides its neurotoxic 
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effects, mercury exposure is associated with renal impairment, 

cardiovascular disorders, and immune system malfunction (Bose-

O’Reilly et al., 2010; Gao et al., 2022). Due to its extreme toxicity and 

environmental durability, mercury is considered a major threat for all 

forms of and for ecological integrity in all environmental compartments 

(Teixeira et al., 2018). The results of the recent experimental studies 

indicating the toxic effects of Hg exposure on several freshwater 

organisms are summarized in Table 6. 

 

Table 6. Toxic effects of Mercury (Hg) exposure on several freshwater organisms 

Species Exposure 

concentration 

and duration  

Effects  References 

Algae 

Chlamydomonas 

reinhardtii 

 1, 2, 4, 6, and 8 

μM – 4 days 

Inhibition of cell growth 

and decrease in 

chlorophyll content. 

Increase in SOD, and 

CAT activities. Up-

regulation in expression 

of the genes coding Mn-

SOD, CA, APX, and 

HO1. 

Elbaz et al., 2010 

Chlorella 

vulgaris 

2.6, 5.2, 10.4, 

20.8, 41.7, and 

83.4 mg/L – 2, 

and 7 days 

Morphological 

transformations. 

Decrease in 

photosynthetic pigment 

and protein levels, and 

SOD activity. Increase in 

ROS content and CAT 

activity.  

Ajitha et al., 

2021 

Scenedesmus 

quadricauda 

0.1, 0.3, 0.5, 0.7, 

and 0.9 mg/L – 

1, 3, 5, 7, and 9 

days 

Separation of cell wall, 

decrease in SOD, and 

POD activities. Increase 

in MDA content. 

Inhibition protein 

synthesis. 

Ge et al., 2022 

Microcystis 

aeruginosa 

5, 10, 20 and 30 

μg/L – 4 days 

Cellular disruption. 

Decrease in 

photosynthetic activity. 

Increase in ROS content 

and SOD activity. 

Tang et al., 2023 

Invertebrates 
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Brachionus 

patulus 

0.675, 1.35, 2.7 

and 5.4 µg/L – 

24 days 

Inhibition of population 

growth. Reduction in the 

length of posterior 

spines. 

Sarma et al., 

2008 

Daphnia magna 

Euchlanis 

dilatata 

5 µg/L - 1 day DNA damage. De León et al., 

2021 

Gammarus sp. 50, and 500 

ng/L – 7, 21 

days 

Over-expression in genes 

involved in respiration, 

and apoptosis. 

De Melo et al., 

2021 

 

Bellamya 

bengalensis 

0.05, and 0.08 

mg/L – 7, 14, 

21, and 28 

Decrease in total 

haemocyte count, protein 

content in 

hepatopancreas, and 

protein content in gonad. 

Dhara et al., 

2022 

Daphnia magna 0.02, 0.04, 0.06, 

and 0.08 mg/L – 

35 min 

Inhibition of mobility. Qin et al., 2024 

Fish 

Cyprinus carpio 0.1 mg/L – 1, 

15, and 30 days 

Suppression of 

acetylcholinesterase 

activity. 

Suresh et al., 

1992 

Brycon 

amazonicus 

0.15 mg/L – 4 

days 

Increases in SOD, CAT, 

GST and GR activities in 

liver cells. 

Monteiro et al., 

2010 

Oreochromis 

niloticus 

0.5, 1, 2, and 5 - 

3, 6, 9, 12, and 

15 days 

Lesions in renal tubule 

and intestinal epithelium. 

Kaewamatawong 

et al., 2013 

Oreochromis 

niloticus 

0.08 mg/L – 3, 

7, 10, and 14 

days 

Decrease in hemoglobin 

level and leukocytes 

counts. 

Seriani et al., 

2015 

Danio rerio 10, and 100 

μg/L – 1, 2, 3, 

and 4 days 

Morphological 

malformations. Decrease 

in CAT, and ACH 

activity. 

Henriques et al., 

2023 

ACH: Acetylcholinesterase, APX: Ascorbate peroxidase, CAT: catalase, GR: 

glutathione reductase, GST: glutathione S-transferase, MDA: Malondialdehyde, POD: 

Peroxidase, ROS: reactive oxygen species, SOD: Superoxide dismutase. 
 

CONCLUSION 

Arsenic, cadmium, chromium lead and mercury are among a 

number of persistent and hazardous contaminants that have a major 

impact on aquatic ecosystems. Discharge of these contaminants from 

industrial effluents, agricultural runoff, and mining activities, and natural 
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processes (such as erosion and volcanic activity) have been increased 

over the last decades. Heavy metals interact with biotic and abiotic 

components after entering the aquatic systems, and are absorbed in the 

tissues of several organisms and eventually result in biomagnification in 

greater trophic levels. Exposure to heavy metals causes oxidative stress, 

alteration of cellular and metabolic functioning, and genotoxicity, 

inhibition of growth, development, alteration of interactions among 

different trophic levels, and decrease survival rate of several species and 

inevitably declines in biodiversity worldwide. 

In this chapter we presented an extensive review of the 

toxicological impacts of arsenic, cadmium, chromium, lead, and mercury 

on various freshwater organisms, based on the recent experimental 

studies. The findings underline the necessity for taking necessary 

precautions to mitigate heavy metal contamination and developing 

purification strategies for remediation of heavy metals from natural 

waterbodies.  
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INTRODUCTION 

Nanoparticles (NPs) are particles of 100 nm and smaller. These 

particles are nanomaterials with very different shapes such as spherical 

and tube (Nowack and Bucheli, 2007; Cupaioli et al. 2014). NPs can be 

examined in two parts according to their formation as natural and 

anthropogenic. Natural particles are formed as a result of natural events 

such as volcanic eruptions. Anthropogenic particles are formed as a 

result of thermodegradation events such as simple combustion products 

and power plants caused by humans (Cupaioli et al. 2014). NPs derived 

from metals such as titanium dioxide (TiO2) and silver can be given as 

examples of anthropogenic products. Another classification is the 

classification according to the elements contained in NPs. NPs 

containing carbon (C) are biogenic, geogenic, atmospheric and 

pyrogenic, while inorganic NPs are natural NPs such as organic acids 

(Nowack and Bucheli, 2007). 

The use of metallic NP materials has also increased due to 

developments in the industrial field. NPs produced with different 

chemical compositions, sizes and shapes are used in many areas such as 

electronics, biomedical, textile. While natural NPs are heterogeneous, 

engineered NPs are homogeneous. This enables more intensive use of 

engineered NPs in the industrial field (Nowack and Bucheli, 2007; Saini 

et al. 2010; Cupaioli et al., 2014). 

This intensive use of NPs and different formation mechanisms 

affect the abiotic and biotic environment in the ecosystem. In terms of 

the abiotic environment, they tend to bind to pollutants in the 

environment and increase their toxic effects (Cheng et al., 2004; 

Gilliland et al., 2004). Especially the very small particle size accelerates 

the penetration of these substances into the cell or body on the biota and 

they become carriers that enable the pollutants to be delivered to places 

they normally cannot reach (Lacava et al., 2003; Berry et al., 2004). 

Studies examining the effects of NPs on the environment have focused 

on revealing NP toxicology and demonstrating environmental health 

effects (Baranowska-Wójcik et al. 2019). It is known that NPs cause many 

negative effects such as activating cellular mechanisms, causing 
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oxidative stress due to the formation of reactive oxygen species (ROS), 

and causing inflammation at the organism level (Chowdhury and Saikia, 

2020). The aim of this review is to show the effects of metallic NP 

substances mixed into aquatic ecosystems on aquatic biota. 

CONTAMINATION OF METALLIC NANOPARTICLES 

INTO AQUATIC ECOSYSTEMS 

Metallic NPs can mix into aquatic ecosystems through 

anthropogenically contaminated soil surface runoff, industrial wastes, 

and wastewater disposal. Natural mixing pathways are the result of the 

mixing of colloidal substances and mineral sediments (Batley et al., 

2013) Organisms living in aquatic ecosystems take NPs into their bodies 

directly by ingestion, gills or skin (Moore, 1990; 2006). In filter-feeding 

organisms, NPs found together with sediment, water or other pollutants 

are taken into the organism (Ray et al. 2020) (Figure 1). 

 

Figure 1. Formation of nanoparticles and their transport into the aquatic ecosystem 

(adapted from Kurwadkar et al. 2015) 
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LETHAL TOXIC EFFECTS OF NANOPARTICLES ON 

AQUATIC ORGANISMS 

Xenobiotic substances mixed into aquatic and terrestrial 

ecosystems and the presence of these substances in the environment as a 

cocktail are of great importance in terms of environmental risk 

assessment (Persoone et al. 2009). There are many studies evaluating the 

possible toxic effects on organisms living in these ecosystems. The first 

step of these studies is to determine the lethal concentration values of 

xenobiotics in organisms. After determining these values, their adverse 

effects on organisms exposed to different routes such as oral and dermal 

are evaluated in acute toxicity studies (Saganuwan, 2016). 

Acute toxicity tests are standard tests used to measure the effects 

of xenobiotics in aquatic ecosystems, and median lethal concentration 

values form the basis of toxicology studies (Brahma & Gupta, 2020). 

Studies on lethal concentration values have been standardized for 

organisms at different trophic levels (Persoone et al., 2009). 

The mean lethal concentration values obtained in acute toxicity 

studies with aquatic organisms are given in Table 1. 
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BIOCHEMICAL EFFECTS OF NANOPARTICLES ON 

AQUATIC ORGANISMS 

NPs easily overcome biological barriers due to their small size. 

Thus, they accumulate at cell and tissue levels and are transported in 

increasing concentrations in the food chain through bioaccumulation and 

biomagnification (Sreya and Chitra, 2021).  

One of the biochemical effects of NP toxicity in aquatic organisms 

is the formation of oxidative stress. Oxidative stress causes ROS, which 

are formed as a result of the increase in free radicals formed in the cell, 

to have negative effects on organic biomolecules (Chowdhury and 

Saikia, 2020; Wang et al., 2020). The cell defense mechanism against 

these events activates antioxidants. While examples of antioxidant 

enzyme systems are superoxide dismutase (SOD), catalase (CAT), 

glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-

S-transferase (GST), there are also small non-protein antioxidants such 

as ascorbic acid, reduced glutathione and vitamin A (Liu et al., 2018). 

One of the examples of lipid peroxidation (LPO) is the biomarker 

malondialdehyde (MDA) (Wojtczyk-Miaskowska and Schlichtholz, 

2018). 

Examples of biochemical effects obtained from NP toxicity studies 

with aquatic organisms are given in Table 2. 
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CONCLUSION  

NP substances are among the materials used in many areas of daily 

life. The entry of these substances, which are used so widely, into 

ecosystems and their effects on organisms are quite alarming. The fact 

that their average lethal concentration values on aquatic organisms are 

quite low, they easily pass through biological barriers such as the blood-

brain barrier and cause biochemical effects in the organism. For these 

reasons, it is very important that the studies on NPs in the coming years 

are more comprehensive and examined with more than one biomarker. 
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INTRODUCTION 

The plastic age began after the discovery of first synthetic polymer 

named bakelite which is derived from formaldehyde and phenolic 

compounds (Frias and Nash, 2019; Williams and Rangel-Buitrago, 

2022). Plastics are defined as “a polymeric material includes chemical 

substances, used to reduce cost and to enhance performance.” (Rai et al., 

2021). Synthetic polymers such as high- and low-density polyethylene, 

polyethylene terephthalate, polypropylene polystyrene, polyvinyl 

chloride are commonly used in the production of daily life goods (Boyle 

and Örmeci, 2020). Due to their lightweight, low cost, and ease of 

processing, they are widely used and produced polymers 

(PlasticsEurope, 2016). Nowadays, plastics are widely used in several 

industries including agriculture, electrical-electronics, packaging, 

construction and healthcare (Rai et al., 2021; PlasticsEurope, 2023). 

The widespread use of plastics created a huge demand for plastic 

material production which inevitably resulted in the accumulation of 

plastic wastes almost in every compartment of the nature (Borrelle et al., 

2020). The worldwide plastic load has exceeded 9.2 billion tons during 

the last few decades. For example, plastic production reached to 

approximately 400 million tons globally in 2022 (PlasticsEurope, 2023). 

Unfortunately, approximately 6.5 billion tons of plastic waste have been 

released into environment (Pilapitiya and Ratnayake, 2024), which 

resulted in a 20-fold increase in plastic pollution; (Walker and Fequet, 

2023). Although, there is a great effort to eliminate plastic pollution by 

developing rules and policies to support plastic recycling (Knoblauch 

and Mederake, 2021) there are several studies indicating that recycling 

of plastic materials is relatively problematic (Roy et al., 2023). Similarly, 

most of the plastic waste needs a very long time to degrade in nature 

mainly due to the strong covalent bonds between monomers of synthetic 

plastic polymers. For example, approximately 117 years is required for 

single a plastic bottle made from high-density polyethylene to 

completely decompose in saltwater, or even up to 500 years in soil 

(Chamas et al., 2020).  

There is no doubt that plastic pollution (mainly originating from 

exposure to micro or nano-sized particles) exerts as a substantial risk to 
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all forms of life (Beaumont et al., 2019; Kasavan et al., 2021). In 

addition, several additives added into plastics during their production 

phases in order to increase stability, flexibility or for an easy further 

processing. However, most of these chemicals are considered potent 

endocrine disruptors and they are not strongly bond to plastics so they 

can easily leach in water (Maddela et al., 2023; Ullah et al., 2023). For 

instance, bisphenol A (BPA) is a common plastic additive incorporated 

into polycarbonate plastic polymers (Chakraborty et al., 2022). 

However, the use of BPA in the production of food grade plastic is 

associated with a high health risk (Plasania et al., 2024). Furthermore, 

BPA may alter fertility, may lead to allergic skin reactions and irritation 

in respiratory track or even cancer in in humans (Vogel, 2009). Another 

common additive is phthalate which is used to decrease fragility in 

plastic materials particularly in the production of PVC. They are widely 

used in the production of food and beverage boxes/packages. However, 

phthalates alter the production of the sex hormone, androgen (Arrigo et 

al., 2023). Exposure to phthalates may induce cancer in human beings 

(Kumar, 2018). Similarly, another group of plastic additives is 

brominated flame retardants used to produce flame resistant plastic 

materials (Hennebert, 2020). But, polybrominated diphenyl ethers 

(PBDEs) are also considered potent EDCs (Ullah et al., 2023). Exposure 

to PBDEs are known to alter glucose metabolism and some hormone 

functions and to increase cancer risk in humans (Renzelli et al., 2023). 

The above mentioned additives also effect aquatic life. For example, 

PBDEs are found to be associated with apoptosis and arrhythmia in 

Danio rerio (Feiteiro et al., 2021). Therefore, since plastics may contain 

toxic additives, or adsorb toxic chemicals (such as heavy metals) on their 

surfaces (Coşkun et al., 2024), and are capable of freely circulating in 

nature, it is anticipated that the risks of exposure to micro- or nano-sized 

plastic particles are underestimated (Yurtsever, 2015; Coşkun et al., 

2024).  

Approximately 60-80% of the wastes found in oceans is made up 

of plastics (Shaikh and Shaikh, 2021; Vivekanand et al., 2021). 

Furthermore, up to 14 million tons of plastic debris flow into marine 

habitats each year (Haward, 2018). Most of the plastic wastes in the 
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oceans is generally linked to terrestrial activities. For instance, 

settlements, urbanization, and industrial activities along the coastal areas 

are primary sources of plastic pollution in terrestrial habitats (Sazlı et al., 

2023).  

The available research indicates that plastic particles -particularly 

micro- and nano-sized plastic particles- freely floating in water column 

are ingested by aquatic organisms which in turn lead to reduced stomach 

capacity, intestinal blockage, internal injuries, or even death in aquatic 

organisms (Sigler, 2014; Shaikh and Shaikh, 2021). Unfortunately, it has 

been reported that more than 140,000 marine organisms, including 

whales, dolphins, sea turtles, seals, and many fish species have died since 

1990’s as a result of ingesting plastics (Hidalgo-Ruz et al., 2012). 

Therefore, assessing the current status of plastic pollution in aquatic 

habitats and revealing their impacts on aquatic life is crucial to protect 

aquatic biodiversity. Thus, in this study, we reviewed the recent literature 

demonstrating i. the presence of nanoplastic particles, their size range 

and their distribution in aquatic ecosystems ii. and the impacts of Np 

exposure on some aquatic organisms, and biochemical responses of these 

organisms to nanoplastic particles.  

 

Plastic particles: size does matter 

Plastic wastes accumulated in aquatic and terrestrial ecosystems is 

quite likely to break down into fine particles through biotic and abiotic 

degradation processes (Choi et al., 2024). The resulting plastic particles 

differ in size (Li et al., 2016; Cai et al., 2018) and have been categorized 

into 4 subcategories; macroplastics (>5 mm), mesoplastics (5 mm to 2.5 

cm), microplastic, and nanoplastic particles (Dhaka et al., 2022; Allen et 

al., 2022). Although, there is a debate on the size range of micro- and 

nano-sized plastic particles, microplastics are generally defined as 

particles <5 mm, and nanoplastics are 1 to 100 nm in at least one 

dimension with a colloidal behavior (Mattsson et al., 2018; Allen et al., 

2022). Generally, nanoplastic particles are considered more hazardous to 

organisms due to their relatively small size, large surface area and higher 

persistence in nature (Oliveira and Almeida, 2019; Liang et al., 2023). 
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Nanoplastics are categorized into 2 main classes based on their 

sources. Primary nanoplastic materials are produced industrially to be 

used in the manufacturing of cosmetics, paints, pharmaceuticals and 

medical applications (Mattsson et al., 2018). Secondary nanoplastics are 

formed from larger plastics due to physico-chemical breakdown, 

photodegradation, biological activities and meteorological events 

(Mattsson et al., 2018; Sazlı et al., 2023). Micro and nanoplastic particles 

are regarded as the final phase of plastic degradation (Zhao et al., 2023). 

For example, it was found that microplastics present in facial cleansers 

can break down into nano-sized polyethylene particles (Hernandez et al., 

2017). The researchers stated that polyethylene nanoparticles (24 to 52 

nm) were found in 3 different facial cleansing products containing plastic 

microbeads (~0.2 mm). 

 

NANOPLASTICS IN AQUATIC ENVIRONMENT 

The extensive use of plastic polymers in several industries 

inevitably gave rise to an increase in the amount of plastic wastes 

deposited in environment (Sazlı et al., 2023). Improper plastic waste 

disposal, incomplete or poor recycling of plastics, or poor regulations on 

the use of disposable plastic materials, seems to be responsible for 

elevated nanoplastic concentrations in all compartments of nature 

(Bläsing and Amelung, 2018; Shi et al., 2024). Nanoplastic particles can 

disperse from the equator to the polar regions, or even in the deep ocean 

layers (Materić et al., 2022a; b). Nano-sized plastic particles can be 

observed in surface waters or sediments depending particularly on their 

density. Generally, nanoplastic polymers with a high density such as 

polyvinyl chloride, polyethylene terephthalate, and polystyrene have a 

tendency to accumulate in sediments. On the other hand, polymers such 

as low-density polyethylene, and polypropylene floats at the surface 

layers (Haegerbaeumer et al., 2019). 

The initial phase of the transportation of plastic debris to aquatic 

ecosystems (i.e. rivers, lakes, and particularly oceans) takes place in 

terrestrial habitats in which plastic wastes carried to these water bodies 

through several natural events such as surface runoff, wind, and erosion 

(Sazlı et al., 2023; Coşkun et al., 2024). As a result, micro- and nano-
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plastic particle concentrations increase particularly in large rivers and 

then carried to the oceans (Yee et al., 2021). For instance, the 

concentration of polystyrene (PS), polypropylene (PP), polyvinyl 

chloride (PVC), polyethylene terephthalate (PET), and polymethyl 

methacrylate (PMMA) nanoplastic particles in the surface water samples 

from in Fuhe River (China), ranged between 0.28 and 0.79 ppb (Xu et 

al., 2022). Sullivan et al. (2020) reported similar results from Tawe River 

(United Kingdom) with an average polystyrene nanoplastic particle 

concentration of 241.8 ppb. In an another study, the average microplastic 

and nanoplastic particle concentration in Chi River (Thailand) were 

found as >204 particles/L; >22 particles/L in tap water; and upto 73 

particles/L in bottled water (Wibuloutai et al., 2023). Similar reports are 

available from marine habitats. For example; polystyrene nanoplastic 

particle concentrations were reported as 3.8 to 4.5 ppb in the surface 

layers of Wadden Sea (Netherlands) (Materić et al., 2022b). Various 

polymer types, including polyethylene (6.5 ng/mL), polyethylene 

terephthalate (2.7 ng/mL), polystyrene (0.11 ng/mL), polyvinyl chloride 

(0.11 ng/mL), and polypropylene (0.57 ng/mL) were observed in 

Greenland ice cores with an average nanoplastic concentration of 13.2 

ng/mL (Materić et al., 2022a). In addition, there are also reports available 

indicating that nanoplastics are observed in water treatment facilities 

(Atugoda et al., 2022). But, removal techniques applied in drinking water 

treatment facilities such as filtration alone fails to remove those particles 

(Devi et al., 2022). 

 

THE EFFECTS OF NANOPLASTIC PARTICLES ON 

AQUATIC ORGANISMS 

Recent experimental research on the impacts of nanoplastic 

particles on aquatic organisms suggests that these particles have 

significant and complex toxic effects (i.e. on reproductive and growth 

rates, enzyme activities, oxidative stress, cellular functions and 

behavioral traits) (Besseling et al., 2019; Auclair et al., 2020; Liang et 

al., 2023) and therefore considered a significant threat to aquatic 

biodiversity (Mattsson et al., 2018). 
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Aquatic organisms ingest nanoplastic particles either voluntarily or 

involuntarily. They can also be internalized through dermal absorption, 

or special mechanisms such as endocytosis depending on the level of 

organization of the organism (Li et al., 2020; Trevisan et al., 2022). Upon 

ingestion these particles may accumulate particularly in alimentary tract 

for a particular period of time before defecation. For example, it was 

observed that 90% of the particles were eliminated after 6 hours of 

starvation in Daphnia magna exposed to polystyrene nanoplastic 

particles (1000nm) while reduction rate was 40% when exposed to 20 

nm particles (Rosenkranz et al., 2009). These findings indicate that 

smaller particles tend to remain in Daphnia for a longer period of time. 

In a similar study where Danio rerio larvae was exposed to or injected 

with 70 nm polystyrene nanoplastic particles, researchers found that 

nanoplastics mainly accumulated in the yolk sac and intestines after 

injection based tests, while accumulation mainly occurred in eyes and 

brain after exposure tests (Zhang et al., 2020). Thus, it is possible that 

nanoplastic particles may pass through cell membranes and can be 

translocated into other organs such as brain and eyes (Li et al., 2020; 

Zhou et al., 2023). Similar reports are also available for algae. For 

example, nanoplastic particles were found to have more adverse effects 

on reproductive output and growth rates of Chlamydomonas reinhardtii, 

(Yan et al., 2021). 

Nanoplastic particles may accumulate in the aquatic food chains 

and reach higher concentrations in higher trophic levels (Zhang et al., 

2020). For instance, in a report, researchers initially exposed the algae 

(Scenedesmus sp.) to nanoplastic particles. Secondly Daphnia were fed 

with the nanoplastic exposed algae. And in the last step fish (Carassius 

carassius) were fed with nanoplastic contaminated Daphnia. Results 

indicated that the experimental fish showed clear signs of alterations in 

their feeding and hunting behavior. They also reported alterations in lipid 

metabolism of the fish.  

In order to achieve a better understating on the effects nanoplastic 

pollution on aquatic organisms we presented a review of the 

experimental studies predominantly from the last 10 years that are 

focusing on nanoplastic pollution is supplied in this study (Table 1). Any 
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details on the chemical structure, size and concentration of the 

nanoplastic particles, exposure duration are also given where possible. 
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CONCLUSION  

Plastic wastes deposited in the environment degrades into smaller 

particles and transformed into micro- or nano-sized plastic particles 

through physical, chemical or biological processes and meteorological 

events. Recent studies reveal that micro and nanoplastic particles are 

spreading in all water bodies and have a world-wide distribution through 

environmental transport mechanisms. Several studies indicate that micro 

or nanoplastic particles can be internalized through ingestion, dermal 

absorption, or endocytosis and can exert various negative effects on 

aquatic organisms. Since they have a capacity to accumulate, more 

severe toxic effects can be observed in species in higher trophic levels. 

Furthermore, the toxic additives added during their production and other 

pollutants (such as heavy metals) adsorbed on their surfaces increase 

risks associated with plastic nanoparticles. Nanoplastics are considered 

more hazardous because of their relatively small size, large surface area 

and higher persistence in nature. 

In this study, a comprehensive review on experimental studies 

focusing on the effects of nanoplastic particles on aquatic organisms is 

given. We also focused on the experimental conditions such as physico-

chemical characteristics and size of the nanoplastics particles. The results 

presented here clearly reveal that the observed responses are dependent 

upon experimental parameters, including the shape, size, polymer type, 

concentration of nanoplastics, exposure conditions, and the species. In 

addition, results also indicate that nanoplastic particles can cross cellular 

membranes and accumulate within cells. 

It should be noted that findings reported here are based on 

controlled laboratory conditions, and significant uncertainty remains 

regarding how real environmental conditions effect the toxic effects of 

these particles. In order to achieve a better understanding on the effects 

of nanoplastic particles there is a need for i. long-term studies that 

incorporate natural environmental conditions and ii. development of 

standardized experimental protocols. Future studies should also focus on 

the internalization mechanisms of nanoplastic particles through cell 

membranes. 
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INTRODUCTION 

Aquaculture, also called aquaculture farming, is the controlled 

cultivation of fish, shellfish, aquatic plants (seaweed, etc.) and other 

aquatic organisms. This concept involves the breeding, growing and 

harvesting of these organisms in a variety of aquatic environments, 

including freshwater systems (ponds, rivers and lakes), marine systems 

(open ocean and coastal waters) and artificial systems (tanks, channels 

and circulation systems) (FAO, 2024a). 

Aquaculture is one of the fastest growing food industries in the 

world today. The production of aquaculture worldwide in 2022 totaled 

around 130.9 million tons or approximately one-third of the world’s total 

aquatic animal production (185.4 million tons). It has also expanded 

owing to rising demand for seafood as people grow, urbanize and 

lifestyles change. Aquaculture development and expansion contributes 

to food security around the world by providing protein and livelihoods 

for millions of people (FAO, 2024b). 

But the industry has likewise endured a considerable 

transformation. Nowadays, it’s a more than 50% of global aquatic animal 

production that’s held by China, India, Indonesia and Vietnam, with 90% 

of the world’s aqua products being supplied by these countries (FAO, 

2024b). The industry will produce 205 million tons per year by 2032 

(FAO, 2024a). Such expansion is essential to satisfy the world’s food 

needs, but it comes with a set of environmental and health problems. 

Aquaculture operations usually demanding many inputs for high 

productivity and control of diseases. Those contributions are antibiotics 

for preventing and treating infections. But the vast adsorption and abuse 

of these drugs has caused serious public health issues around 

antimicrobial resistance (AMR) (Shahabuddin et al., 2024). World 

Health Organization (WHO) characterizes AMR as a worldwide 

epidemic that could undo decades of medical advances in infectious 

disease treatment (WHO, 2017). 

Antimicrobial resistance can be defined as the process by which 

the microorganisms including viruses, fungi and bacteria, parasites 

become resistant to the effects of drugs after some time. Some of the 

ways through which this occurs include genetic variations or horizontal 
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transfer of genes (WHO, 2023). In aquaculture, antimicrobial use in the 

management of fish diseases accelerates the development of resistance 

thus the pathogens released into the environment through consumption 

of seafood or environmental pathways (Chintagari et al., 2018). 

The consequences of antimicrobial resistance are various. The 

pathogens that are resistant to treatment are harder to cure and may 

require the use of more aggressive drugs with adverse effects. It was 

noted that the number of deaths from diseases caused by antimicrobial 

resistant organisms is about 5 million per year and AMR might lead to 

10 million deaths per year and will cost $100 trillion to the global 

economy by 2050 (WHO, 2019). Also, since aquaculture products are 

usually eaten raw or undercooked, the chances of getting infected by 

resistant pathogens is also high (Chintagari et al., 2018). Studies have 

shown that the level of antimicrobial resistance to many clinically 

significant antimicrobials in the bacterial pathogens in aquaculture 

environments is more than 50% (Schar et al., 2021). This resistance not 

only has an impact on human health but also on animal health and 

welfare particularly in the production systems. It is important to note that 

the presence of resistant bacteria in water bodies is dangerous to the 

environment as well as can pose a challenge to disease control efforts 

(Schar et al., 2020). 

Furthermore, the international trade in the global supply chain of 

seafood and maritime transport also lead to the dissemination of resistant 

bacteria across the borders. This is especially so because such countries 

have weak regulatory systems as regards the use of antimicrobials in 

agriculture, and have scarce health resources (WHO, 2019). The fight 

against AMR in aquaculture cannot be achieved through a single 

approach and this includes enforcing proper regulations on use of 

antimicrobials, encouraging the practice of other disease control 

measures such as vaccination and improved biosecurity and establishing 

surveillance systems that will help in the identification of patterns of 

antimicrobial resistance. It is also important to conduct awareness 

sessions for farmers on the proper use of the antimicrobials to help 

minimize this threat (Preena et al., 2020). In this section, the use of 

antimicrobials in aquaculture will be assessed and the situation of 
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antimicrobial resistance, as well as the present and future potentials of 

health threats, the authors will make an assessment on how sustainable 

farming is likely to be with the measures that can be adapted. 

 

ANTIMICROBIALS USED IN AQUACULTURE  

The application of antimicrobials in aquaculture is deemed as an 

essential aspect in the management of diseases and promotion of health 

of aquatic animals to facilitate sustainable production. Since it is 

expected that the use of antibiotics will rise in conformity with the 

growth of the aquaculture sector, it is crucial to know which antibiotics 

are applied in what context and how often to address the problems related 

to AMR in the first place. 

It is reported that antimicrobials are used for 3 purposes in 

aquaculture. These are the prevention and treatment of diseases and the 

promotion of growth. An effective antimicrobial treatment can reduce 

production losses and ensure the sustainability of the system (Schar et 

al., 2020). 

In farming conditions where high-density production is carried out 

and stress levels are accordingly high, metaphylactic and prophylactic 

antimicrobial applications are made. These applications aim to protect 

the health of farm animals and minimize economic losses associated with 

disease outbreaks. Prophylactic application is the continuous application 

of a certain amount of antimicrobial regardless of the disease outbreak. 

Antimicrobial application, especially when some individuals in the herd 

show signs of disease or when an outbreak is expected depending on the 

rearing conditions, is called metaphylactic application (Bondad-

Reantaso et al., 2023). Apart from these, it has been observed that some 

antimicrobials increase feed utilization and stimulate growth by affecting 

the intestinal microbiota. 

WHO reports that incorrect and/or excessive use of antimicrobials 

can lead to the emergence of resistant strains that pose significant risks 

not only in aquaculture but also to other living organisms in the 

ecosystem and human health through the food chain (WHO, 2017). 
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However, it is stated that these applications, which are not used as 

treatment in many countries today, are prohibited or restricted due to 

their effects on the development of AMR (He et al., 2017). 

 

Antimicrobials Consumption 

The choice of antimicrobial is generally considered to depend on 

the pathogens present, the type of aquaculture system (freshwater or 

marine) and local regulations governing the use of antimicrobials (Ferri 

et al., 2022). Although they vary, the antimicrobials used in practice are 

concentrated on a few main groups. The most used are reported to be 

quinolones, tetracyclines, phenicols and sulfonamides (WHO, 2019). 

It has been reported that quinolones are the most commonly used 

antimicrobial class globally with a rate of 27% (WHO, 2019). 

Antimicrobials in this class show their effects by inhibiting bacterial 

deoxyribonucleic acide (DNA) gyrase and protein synthesis. On the basis 

of the findings of this study, enrofloxacin and difloxacin have been 

identified as the most commonly applied antimicrobials in this class in 

aquaculture (Miranda et al., 2013). The use of these antibiotics has been 

widely documented to be common in the treatment and prevention of 

infections from Gram negative bacteria for instance Aeromonas spp., 

Vibrio spp., Escherichia coli (E. coli) and Edwardsiella spp. As the use 

of these antibiotics has increased, it was discovered that the quantity of 

genes that are transferable such as the qnr gene which is a plasmid-

mediated quinolone resistance gene has also increased in the 

environment (Yan et al., 2017; Miranda et al., 2022).  

Tetracyclines are the 2nd most used antimicrobial class across the 

globe with 20% (WHO, 2019). It has been noted that the antibiotics in 

this class are referred to as broad spectrum and they have activity against 

many Gram positive and Gram negative bacteria. It has also been 

mentioned that they have a simple application method of adding it into 

the feed or water and that is why they are popular in aquaculture 

(Cabello, 2006). It has been mentioned that oxytetracycline and 

doxycycline are the most commonly used in this class and they are used 

in bacterial infections including Aeromonas spp., Vibrio spp. and 

Flavobacterium spp. (Ferri et al., 2022).  
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Phenicols have been identified as the third most frequently 

applied antibacterial class in the world with the usage share of 18% 

(WHO, 2019). In aquaculture, one of the antimicrobials in this class, 

florfenicol is used to prevent deaths caused by bacterial infections 

including Aeromonas hydrophila, Vibrio anguillarum and Edwardsiella 

ictaluri. Florfenicol acts by binding to the 50S ribosomal subunit thus 

blocking the protein synthesis in the bacteria. This antibiotic is safer as 

it does not cause human aplastic anemia as is the case with 

chloramphenicol. The presence of genes that encode for this group of 

antibiotics for example floR in the aquaculture systems raises concerns 

on the spread of resistance (Miranda et al., 2013). Also, the application 

of this class of antibiotics in aquaculture is restricted due to the residues 

which may be hazardous to human health, therefore strict regulations are 

imposed on its usage (Ferri et al., 2022).  

Sulfonamides are 4th on the list of most often applied antibacterial 

agents with the usage rate of 14% (WHO, 2019). It has been stated that 

sulfadimethoxine and ormethoprim of this class are used in combination 

therapy since it is believed to be more effective. These antimicrobials 

work by suppressing the synthesis of folic acid which is imperative to 

bacterial DNA synthesis. They are often administered along with 

trimethoprim with an aim of enhancing the bacterial killing. However, it 

was seen that the aquaculture environments are prone to the increase in 

the amount of sul1 and sul2 genes which are resistance genes to 

sulfonamides (İbrahim et al., 2020).  

Macrolide antibiotics which include erythromycin and 

azithromycin have been used mainly to cure Flavobacterium spp. And 

Gram positive organisms such as Streptococcus spp. infections (Sarmah 

et al., 2006). These antimicrobials have a wide spectrum activity and, 

like the phenicol antimicrobials, act through binding to the 50S 

ribosomal subunit thereby blocking protein synthesis. Cesare et al. 

(2013) and Miranda et al. (2013) noticed that the frequency of detection 

of the erm and mef genes that confer resistance to antibiotics of this class 

has been on the rise in aquatic environments. 
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It is reported that frequently used compounds such as neomycin, 

lincomycin and formalin can be used as disinfectants especially for the 

treatment of fungal infections (Lee et al., 2021). 

 

Amount and Frequency of Antimicrobial Use 

According to research, the global antimicrobials use in the year 

2013 was 162,000 tons (Zhang et al., 2015). It has been estimated that 

the majority of it was applied in animal production; the majority of these 

antimicrobials used were used in aquaculture. It has been noted that 

aquaculture may intensity differ considerably depending on usage in the 

area and the production system used. In some countries where there are 

no legal found. rules In and a regulations study and conducted no in 

check Bangladesh, is it done, was excessive observed use that of 71 

antimicrobials % can of the fish farms applied antimicrobials at least 

once during the production cycle. It was also observed that the usage of 

antimicrobials was significantly higher in the freshwater systems as 

compared to the brackish water the systems current (Chowdhury et al., 

2022). Usage in animal is production believed in that China is about half 

of the global total and most of it is used in aquaculture. It was also 

highlighted that accounted in 57.9% China of the global consumption, 

India accounted for 11. 3% and other countries made up the remaining 

30.8% in 2017 (Mulchandani et al., 2023). by These the two-year 

countries 2030 are with expected China’s to market remain share the 

projected biggest to consumers drop of to 55.9% while India’s market 

share is expected to be the same (Tiseo et al., 2020). 

A research study done in Chile revealed that there has been an 

increasing trend of the use of antimicrobials in the salmon farming sector 

and the most commonly used antimicrobial in the seawater farming 

zones was identified to be florfenicol (Ibrahim et al., 2020). 

 

RESISTANCE MECHANISMS 

It is therefore necessary to identify the mechanisms of 

antimicrobial resistance to assess its effects in aquaculture and the 

environment. Several mechanisms are involved in the evolution and 

dissemination of antimicrobial resistance which include genetic 
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mutations, horizontal gene transfer and selection pressure. The factors 

that cause selection play a significant role in determining the type of 

microbial communities that are present as well as their rate of evolution 

with regards to antimicrobial resistance. In aquaculture, antimicrobial 

use in the prevention and treatment of diseases as well as promotion of 

growth ensures that only the resistant strains survive and propagate the 

susceptible ones (Gullberg et al, 2011). 

 

Genetic Mutations 

Genetic mutations are considered as one of the major causes of 

AMR. These mutations can happen naturally during DNA replication or 

can be caused by other factors such as antimicrobial exposure. When 

bacteria are subjected to antimicrobials, only those that have mutations 

on their genetic make up which confers resistance to the antimicrobials 

used will reproduce and multiply in the population. Hence the frequency 

of resistant bacteria increases in the population over a period (Levy and 

Marshall, 2004). 

Out of the genetic mutations that take place there is the variation 

in the target site which is affected by the antimicrobials. Antimicrobials 

work by attaching themselves to specific targets in the bacterial cell and 

once these targets are modified by mutations for instance; the affinity for 

the antimicrobial is reduced and thus the antimicrobial is no longer 

effective. For instance, mutations in the gyrA gene of E. coli can lead to 

alteration of the DNA gyrase enzyme thus conferring resistance to 

fluoroquinolones (Harms et al., 2016). Some of the bacteria have efflux 

pumps which eject antimicrobial agents out of the bacterial cell. 

Alterations in the genes that regulate the expression and function of these 

pumps can cause the development of resistance in the bacteria. For 

instance, the upregulation of the acrAB efflux pump in E. coli leads to 

the development of resistance to a number of antibiotics (Piddock, 2006). 

Biofilms are another way through which mutations can occur in bacteria 

since they form a protective shelter for the bacterial communities. 

Biofilms may also block the action of antimicrobials, shielding bacteria 

from the host defense mechanisms and therefore allowing the persistence 

of resistant strains as seen (Donlan and Costerton (2002). 
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Horizontal Gene Transfer 

Other mechanisms that also involve in the dissemination of 

antimicrobial resistance in the bacterial population include Horizontal 

gene transfer (HGT). Vertical gene transfer is where genes are passed 

from parent to offspring while in HGT genes are exchanged between 

bacterial species or strains. This process can cause the rapid spread of 

resistance genes within microbial communities, especially in aquaculture 

environments where different bacterial populations coexist (Villa et al., 

2019).  

HGT occurs in three main ways. The first of these is 

transformation. In transformation, competent bacteria take up free DNA 

that causes resistance in the environment. Thus, they can become 

resistant to antimicrobials (Lorenz & Wackernagel, 1994). Another 

method, transduction, involves bacteriophages (viruses that infect 

bacteria) transferring genetic material between bacterial cells. During 

this process, a bacteriophage may unintentionally package a piece of 

bacterial DNA containing resistance genes and transfer it to another 

bacterium (Hatfull, 2008).  

In the third method, conjugation, bacteria directly acquire genetic 

material from another bacterium through physical contact. The acquired 

genetic material is usually plasmids. A bacterium forms a conjugation 

pili to conjugate with another bacterium. Once this is done, plasmids 

carrying multiple and different antimicrobial resistance genes can be 

transferred (Grohmann et al., 2003). 

The ability of bacteria to acquire resistance genes through HGT is 

more readily available in aquaculture environments where antimicrobial 

use is widespread. The presence of resistant bacterial strains in livestock 

on production farms can lead to the spread of their genes to wild 

populations or other aquatic environments through water exchange or 

sediment interactions (Fu et al., 2022). 

 

SPREAD OF ANTIMICROBIAL RESISTANT 

PATHOGENS 

The use of antimicrobials in aquaculture for the management of 

antimicrobial resistant bacteria (ARB) poses a risk to human health. It is 
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hence important to know how these pathogens can be transmitted to 

humans to minimize the risks that are associated with the use of 

antimicrobials in aquaculture. 

 

Direct Transmission  

ARBs are released into the environment in different ways such as; 

waste water discharges from farms, improper disposal of antimicrobial 

residues and antimicrobial waste from aquaculture facilities, agricultural 

runoff and surface water drainage from fish farms amongst others. Thus, 

there is direct transmission of antimicrobial-resistant bacteria to humans 

from aquaculture through the following mechanisms. The major route of 

ARB transmission is through the consumption of aquaculture products 

infected with bacteria. When fish or shellfish are produced using 

production systems that are subject to antimicrobial usage, it makes fish 

or shellfish imported from such systems potentially contaminated with 

antimicrobial residues or resistant bacteria. It was established that 

bacteria including Vibrio spp., Salmonella and E. coli were detected in 

aquaculture products which pose a direct threat to consumers (Ferri et 

al., 2022). 

A study conducted in China by Wu et al. (2023), focused on ARB 

and antibiotic resistance genes (ARG) in aquaculture. In this study, 136 

possible ARB were identified in 6 water samples taken from the Zhejiang 

province. It was determined that 80% of ARB consisted of Aeromonas 

spp., Shewanella spp., Acinetobacter spp., Myroides spp., Pseudomonas 

spp., and Citrobacter spp. However, it was determined that 80.15% of 

the isolates were resistant to at least one antibiotic, and most isolates 

were resistant to more than one antibiotic. Another result that is different 

from these results and more important is that genotypic and phenotypic 

resistance data did not fully overlap with each other. It was reported that 

ARGs were more diverse (Wu et al., 2023).  

In another study conducted in China by Ye et al. (2013), 100% of 

the bacteria isolated from 10 different seafood products purchased from 

markets were found to be commensal ARBs and 505 were multidrug 

resistant (MDR). Acinetobacter spp., Morganella spp. were commonly 

found in these samples. and Pseudomonas spp. were isolated, and the 
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most resistant isolates were Aeromonas spp. and Enterobacteriaceae (Ye 

et al., 2013). 

Also, the techniques that are used in preparation of food are also 

vital in the risk of contamination. If proper hygiene measures are not 

taken, those who handle the raw seafood may contract the disease or 

transfer the bacteria to their hands or kitchen utensils. These bacteria may 

then be spread to other foods or ingested directly and cause infections. 

The Centers for Disease Control and Prevention (CDC) (2024) has stated 

that casual contact with raw seafood is a means of ARBs’ spread. 

Other contact with the environment can also contribute to the 

contamination as well. People who are engaged in recreational activities 

in the water within the proximity of the aquaculture farms may have a 

potential of getting in touch with ARB’s which are present in such farms. 

These include activities such as swimming or fishing among others. 

Research have also indicated that exposure to polluted water during 

recreation may result in stomach upsets due to bacterial infection by 

resistant strains (Pepy and Focardi, 2021). 

 

Indirect Transmission 

Besides direct contact there are also the indirect methods of ARB 

transmission to human being. The first of these is environmental. The 

antimicrobials used in aquaculture release the antibiotics into the 

environment through wastewater discharge from the farms. These 

wastewater-borne antimicrobials and ARB are reported to survive in the 

aquatic environments for some time. These pollutants let loose into rivers 

or coastal waters will definitely affect the quality of water and may help 

in the dissemination of resistance genes among the environmental 

bacteria. The presence of resistant strains in environmental waters poses 

a danger to the aquatic life as well as to human beings who may come in 

direct or indirect contact with the waters or consume seafood products 

from the waters (Heuer et al., 2009; Edebuani et al., 2021). 

The use of antimicrobial residues and resistant bacteria in aquatic 

environment pose a threat to the food chain. Plankton and other small 

organisms can consume these pollutants. Other larger animals that 

consume these creatures also accumulate antimicrobial residues and 
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ARBs in their tissues since they consume the creatures (Heuer et al., 

2009). 

Besides direct transmission, there are also indirect methods that 

ARB can be transmitted to humans. The first of these is environmental. 

Antimicrobials in aquaculture can be released into the environment 

through wastewater outputs from the fish farms. This wastewater usually 

contains antimicrobial residues and ARB which can be found in aquatic 

environments for some time. These pollutants released into rivers or 

coastal waters can affect local microbial communities and therefore may 

promote the dissemination of the resistance genes among the 

environmental bacteria. The presence of the strains in the environmental 

waters poses a threat not only to the aquatic life but also to human being 

who may come in contact with these waters or consume sea foods (Heuer 

et al., 2009; Edebuani et al., 2021). 

Wastewater from aquaculture can be used as fertilizer in 

agricultural areas. This practice can lead to contamination of soil and 

products with antimicrobial residues and ARBs. When these produced 

foods are consumed by humans or fed to farm animals, the risk of ARB 

spreading to the human population increases (O’Neill, 2016). 

HTG is also an important factor which leads to the emergence of 

antimicrobial resistance. The ability of the bacteria to transfer genes 

across different species of bacteria is through HGT which can be done 

through many ways. One of these is biofilms. Structures like nets, tanks 

and sediments enable the formation of biofilms in aquaculture systems. 

Biofilm is capable of accommodating many different types of bacteria 

and the transfer of genes between the bacteria is enhanced due to the fact 

that the bacteria are located in close proximity. The biofilm mediates the 

transfer of the resistance genes in the aquatic bacteria as well as those in 

the human pathogens since plasmids are present in the biofilm (Heuer et 

al., 2009; Pepi and Focardi, 2021). The waterbodies in the vicinity of the 

aquaculture sites are also the depots of resistant bacteria. These 

environments are characterized by the presence of human, animal and 

environmental pathogens that can share genes through HGT process. 

Therefore, the genes originating from aquatic bacteria can be passed to 

the human pathogens, including Salmonella or Shigella, thus reducing 
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the effectiveness of the antimicrobial treatments used for infections 

caused by these bacteria (Fastl et al., 2023). 

 

EFFECTS ON HUMAN HEALTH 

The increasing antimicrobial resistance in aquaculture has many 

effects on human health. 

 

Rise in Infection Rates 

The infections due to ARBs are on the rise, which is a direct risk 

to public health. There are more and more ARB strains that appear in the 

human population with the food chain or with the use of recreational 

services and seafood products, which may lead to the development of the 

infections that are hard to treat (Longo & York, 2024). Analyzing the 

levels of ARBs in seafood products from different areas of the world has 

revealed that seafood produced in areas with high intensities of 

aquaculture contains higher levels of ARBs than those produced in areas 

with low intensities of aquaculture (Founou et al., 2016). The infections 

caused by the resistant strains lead to a number of days in the hospital, 

high expenses on medication and enhanced mortality (O’Neill, 2016). 

The mortality rate of patients affected by carbapenem-resistant 

Enterobacteriaceae has been estimated to be greater than 50% (WHO, 

2023). 

 

Restricted Treatment Alternatives 

The availability of antibacterial agents reduces the efficacy of the 

following antimicrobials that are commonly used in treating infections. 

The spread of antimicrobial resistance is making the healthcare providers 

to struggle in managing infections that could have been cured with 

standard drugs. This therefore means that there is need to use the last line 

antimicrobials which may have severe side effects and may not even 

work (WHO, 2023). 

 

Epidemics 

There is a high chance of large scale outbreaks of public health 

concern where ARBs are concerned and are coming from aquaculture. 
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Some of the ARBs have been isolated from wild aquatic animals that act 

as their natural host. These bacteria may spread to other farm animals or 

to humans directly or indirectly through exposure to the environment and 

food (Abia et al., 2016). Outbreaks of ARB species Salmonella and 

Vibrio have been known to be related to seafood products and this 

includes outbreaks originating from contaminated seafood. Such 

outbreaks can cause a lot of pressure on the health care systems and pose 

a very dangerous level of morbidity and mortality (Boeckel et al., 2015). 

Besides, some categories of people including the elderly, 

immunocompromised, and those with implantable devices are more 

prone to infections from resistant pathogens from aquaculture settings 

(Boeckel et al., 2015). 

 

Surgical Complications 

Patients who are undergoing a surgical procedure are at higher risk 

of acquiring infection from ARBs. Surgical side infections (SSI) are of 

interest as they can lead to other complications and will increase the 

duration of the recovery period (Iwu et al., 2020). 

 

Financial Drawbacks 

Thus, the costs of AMR are not only the expenses of the healthcare 

sector. The expected future increase in the number of admissions and 

failures of treatment may negatively affect the availability of the public 

health funds (Laxminarayan et al., 2016). 

 

ECOLOGIC IMPACTS 

The consequences of AMR in aquaculture are not confined to the 

aquaculture farms alone. It affects the whole aquatic system and there is 

a decline in species diversities. Research has indicated that the antibiotic 

residues from aquaculture are able to remain bound to sediments or water 

columns for relatively long time and enhance the growth of resistant 

bacteria. All these change the microbial population with a huge risk of 

affecting the farmed species as well as the wild ones in the same area 

(Zhang et al., 2024). 
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Spread of Resistance in Aquatic Environments 

Antimicrobial resistance in aquatic environments is a multifaceted 

issue which is directly linked with aquaculture. The application of 

antimicrobials in aquaculture is as a result of attempts by farmers to 

manage diseases. But this remains a major factor in the formation and 

dissemination of the strains of resistance (FAO, 2023). When 

antimicrobials are added to aquaculture farms, it creates a selective 

pressure that enables the proliferation of the bacteria that are resistant to 

the antimicrobials while eliminating the sensitive ones. Furthermore, it 

has been evidenced that ARBs originating from aquaculture can remain 

in sediments for a certain period even after the antimicrobial use has been 

stopped (Zhang et al., 2024). This sustained presence indicates that the 

resistant strains can still impact the surrounding environments even after 

the use of antimicrobials in aquaculture and may play a role in the total 

ARB burden in aquatic systems (Iwu et al., 2020). 

 

Impacts on Biodiversity 

AMR’s effect on biodiversity is said to be a major concern which 

needs to be addressed. Biodiversity is important as it aids in the ability 

of ecosystems to bounce back from any form of change. Different 

ecosystems have different abilities in coping with changes in 

environment and fighting diseases. But as AMR advances further into 

the aquaculture environment, the robustness of marine ecosystems 

declines (Ahmad et al., 2022). 

Among the causes of the reduction of biodiversity, one can identify 

the effect of AMR on keystone species that are very numerous and very 

well positioned in the ecosystem. The loss of keystone species or the 

decline of keystone species due to competition with AMR species will 

have chains of effects on ecosystems (FAO, 2023). When a specific fish 

that is crucial in the nutrient cycle is less abundant due to the competition 

with the resistant farmed fish, this can have an impact on other organisms 

that require these nutrients (Villéger et al., 2017). 

Furthermore, the declines in the fish stocks due to AMR can also 

affect the provision of habitat and nutrient cycling. Fish are important in 

balancing the food chain and supporting a rich and diverse marine life. 
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But when antibiotics reach the aquatic ecosystems because of 

aquaculture, for instance, such functions may be affected (Tičina et al., 

2020). Loss of biodiversity also generates a number of ethical questions 

regarding conservatory measures and our duty of preserving natural 

habitats. With more and more man-made interventions taking place in 

the aquatic systems including the aquaculture without an adequate 

understanding of the ecological consequences, we may be losing the 

genetic resource that will be needed for the management of future 

changes (Lagerstrom et al., 2021). 

 

ANTIMICROBIAL RESISTANCE MANAGEMENT 

STRATEGIES 

Since the risk of AMR in aquaculture is on the rise, it is crucial to 

design and put in place efficient and suitable measures to address the 

problem. These strategies should concentrate on disease control 

mechanisms, optimization of antimicrobial usage, legal measures, and 

right practices in aquaculture (FAO, 2024b). 

 

Alternative Methods for Striving Diseases 

In aquaculture, other measures are vital in reducing the usage of 

antibiotics. These methods include several measures that are used in 

order to avoid diseases as well as to enhance the health of aquatic animals 

not using antimicrobial treatment. 

 

Vaccination 

One of the most promising alternatives to antimicrobial use is 

vaccination. Vaccination can provide effective protection against certain 

pathogens by reducing the incidence of disease in farmed fish. The first 

record of vaccination dates to 1938. Snieszko et al. (1938) reported that 

vaccinated carp became resistant to Aeromonas punctata. Vaccination 

against Aeromonas salmonicida in rainbow trout dates to 1942 (Duff, 

1942). The first vaccination to protect against the disease was applied in 

1949 (Snieszko and Friddle, 1949). It has been stated that vaccination 

has been applied against various agents for many fish species since the 

first vaccination (Su et al., 2021). 
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It is reported that vaccination is generally done in 3 ways. These 

are oral, injection and immersion. The vaccines used can be inactivated, 

attenuated, recombinant, or synthetic peptides, DNA, or nanomolecular 

(Mondal and Thomas, 2022). 

 

Probiotics and prebiotics use 

As in many other farming systems, they are used in aquaculture to 

activate both humoral and cellular immunity and to control disease. 

Probiotics are beneficial microorganisms that support health. These 

microorganisms that settle in the gastrointestinal system change the 

microflora. Thus, they help control infection by preventing the 

colonization or proliferation of pathogenic bacteria (Pereira et al., 2022). 

For this purpose, in addition to algae and yeast, some specific 

microorganisms such as Bacillus sp., Lactococcus sp., Micrococcus sp., 

Carnobacterium sp., Enterococcus sp., Lactobacillus sp., Streptococcus, 

and Weissella sp. are also used (Gheziel et al., 2019). Studies have shown 

that certain probiotic bacteria such as Enterococcus casseliflavus can 

effectively reduce fish mortality rates by preventing Streptococcus iniae 

infection encountered in rainbow trout (Orcorhynchus mykiss) farming 

(Safari et al., 2016). It has been reported that prebiotics are the feed 

additives which are not digested by the organisms and enhance the 

activity and number of the beneficial bacteria in the gastrointestinal tract 

and can contribute to the improvement for of this fish purpose, health 

short-chain and fructooligosaccharides, performance oligofructose, 

(Merrifield & Carnavali, 2014). For this purpose, mannanoligo 

saccharides, transgalactooligosaccharides, inulin and galactooligo 

saccharides are utilized (Ringo et al., 2016). Research studies have also 

shown that the oil added to the feeds used can also have an effect on the 

intestinal micro flora. In a study performed by Huang (2008), it was 

observed that Proteobacterium microflora of grew grass more carp while 

that Clostridium was maritinum-like fed bacteria with reduced diet in 

containing the feed intestinal oil containing phospholipid:rice bran at the 

ratio of 2:1 at the rate of 1.23% for 8 weeks (Huang, 2008). 
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Enhanced biosecurity measures 

It is therefore important to put in place proper biosecurity measures 

so that diseases do not occur in the aquaculture facilities. Some of the 

measures include control of access to the farms, proper hygiene in 

equipment and constant monitoring of water. The following practices can 

therefore be adopted to reduce the use of antimicrobials as they will 

minimize the chances of introducing and are spreading therefore 

pathogens important (Bera et al., 2018). 

 

Controlled environmental conditions 

The environment is favorable for the fish as this enhances their 

health. Some of the factors that include water temperature, salinity, and 

oxygen concentration levels are known to affect disease susceptibility. 

The management of these parameters can therefore help in preventing 

stress related diseases which in most cases will involve the use of 

antimicrobials (Baker-Austin et al., 2006). 

 

Reduced Antimicrobial Use 

AMR is one of the biggest threats in aquaculture as use of 

antimicrobials in aquaculture contributes to it. It has been suggested that 

the use of antimicrobials can be reduced through this way so that the 

selection pressure can be reduced. It is highlighted that such programs 

should be developed that will establish the principles of reducing 

antimicrobial use and the guidelines on when and how to use them should 

be laid down (Laxminarayan et al., 2016). 

However, the use of antimicrobials and the monitoring of 

antimicrobial resistance should be done routinely to assess the efficacy 

of measures that have been put in place to reduce antimicrobial use. 

Surveillance programs assist in recognizing the patterns of resistance and 

thus offer the information needed in decision making when it comes to 

antimicrobial use (WHO, 2015). 

Establishing treatment guidelines where other means of 

intervention are given a higher priority than the use of antimicrobials is 

deemed to help in the fight against the unnecessary use of antimicrobials. 

The following guidelines should be developed based on current best 
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practices and be appropriate to the specific aquaculture systems and 

species (Laxminarayan et al., 2016). 

It is reported that governments should implement stricter 

regulations regulating the use of antimicrobials in aquaculture. It is also 

stated that it is important to include limiting the types of antimicrobials 

that can be used, prohibiting their use for growth promotion, and 

requiring veterinary prescriptions for therapeutic applications (WHO, 

2015). 

On the other hand, it is reported that introducing reporting 

requirements for antimicrobial use and emerging resistance among 

aquaculture producers can increase transparency and accountability in 

this sector. Thus, the information obtained can be used to improve public 

health by informing policy makers and the public (FAO, 2023). 

In addition, it is suggested that the regulatory legislation to be 

prepared should include incentives for aquaculture producers who 

minimize antimicrobial use and prefer sustainable production. Thanks to 

the financial support programs to be implemented, producers will be 

encouraged to invest in alternative disease management strategies and 

improve sustainability in production (FAO, 2023). 

 

Sustainable Aquaculture Practices 

Implementing sustainable aquaculture practices is important to 

reduce AMR risks while ensuring food safety and environmental 

protection. Today, we encounter different examples of this. 

 

Integrated multi-trophic aquaculture (IMTA) 

Integrated multi-trophic aquaculture (IMTA) is the growing of 

several organisms of different trophic levels in the same culture system. 

This approach minimizes waste production by ensuring that nutrients are 

reused hence enhancing the system’s stability. A suitable example is the 

businesses in which other species for instance shellfish or seaweed are 

included in fin fish farming; this helps in reducing the social and 

environmental effects while increasing the production output (García-

Poza et al., 2020). 
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Organic aquaculture 

When organic aquaculture is mentioned, the first production 

method that comes to mind is the environmentally friendly production 

systems in which antimicrobials and other chemicals are used in minimal 

amounts. It has been suggested that the organic aquaculture systems that 

are developed according to the production standards that protect the 

environment and the biodiversity of the area and use natural feed 

resources can produce safe and high-quality seafood with the reduced 

risk of AMR (FAO, 2023). 

 

Research and innovation 

Today, it is stressed that the understanding that supports and 

embraces new approaches and research into the topic is required in order 

to build sustainable systems in aquaculture. It is stated that it is important 

to consider methods including new feed additives, new antibacterial 

strategies (bacteriophages or antimicrobial peptides), and new varieties 

of disease resistant strains in the management of challenges arising from 

AMR (Baker-Austin et al., 2006). 

 

CONCLUSION 

The issues of AMR in aquaculture system cannot be 

overemphasized given the fact that there is need to appreciate the 

mechanisms of AMR emergence and its effects on the environment and 

measures that can be taken to curb it. AMR is a serious threat to aquatic 

life as well as human health through consumption of infected or infected 

products. 

Genetic mutations allow the bacteria to acquire resistance as well 

as horizontal gene transfer that enables the spread of resistance genes fall 

under the AMR mechanisms. Some of the ecological impacts of AMR 

are 1) alters marine ecosystems through habitat degradation, 2) poses a 

threat to biodiversity through nutrient enrichment from aquaculture 

activities that result in blooms and 3) threats competition with indigenous 

species. The spread of ARBs into the environment makes these issues 

even more complex by increasing the likelihood of antibiotic resistant 

infections. Other measures which have been used in the fight against the 
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disease include AMR reduction strategies, vaccination, probiotic and 

prebiotic usage, biosecurity improvements, establishment of surveillance 

and monitoring activities and regulations that control the use of 

antimicrobial agents and encouragement of sustainable aquaculture 

practices such as IMTA. 

To this end, the following should be the focus of future research: 

Identification of resistance mechanisms; New therapies including 

bacteriophages or immunostimulants; Analysis of AMR development 

over time in various aquaculture systems through resistance modelling. 

To tackle this global challenge of AMR in aquaculture, intensive 

research, international cooperation, public awareness, and more 

especially the improvement of food safety policies will be of great 

impact in reducing risks.  
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INTRODUCTION 

Human activities have pressed hard on freshwater systems being 

polluted. In fact, various human-induced effects impinge directly and 

indirectly on freshwater ecosystems, with the dominant role of 

agricultural activities, followed by industrial and domestic influences 

(Turgut & Özgül, 2009). There is great awareness that pesticides, 

extensively used in agriculture, reach freshwater systems via numerous 

pathways and are acting destructively on these systems.   

Pesticides are a general category of chemicals that can be 

subdivided based on their target organisms (Table 1) and chemical 

structures (Table 2). They are classified into distinct groups, each with 

specialized mechanisms of action. In addition, it is known that each of 

them has different effects on aquatic organisms in aquatic environments 

where they are contaminated. 

 

Table 1. Pesticide Groups Based on Target Organism 

Pesticide Groups Target Organisms 

Insecticides Insects 

Fungicides Fungi 

Herbicides Weeds 

Molluscicides Molluscs  

Rodenticides Rodents 

Acaricides Mites, ticks 

Bactericides Bacteria 

Avicides Birds 
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Table 2. Pesticide Groups Based on Chemical Structure 

Pesticide Group 
Chemical 

Structure 
Mechanism of Action Examples 

Organochlorines Contains 

chlorine atoms 

It affects the nervous 

system, causing 

paralysis in insects' 

nervous systems 

DDT, BHC, 

Aldrin 

Organophosphates Contains 

phosphorus 

atoms 

Inhibits 

acetylcholinesterase 

enzyme, affecting the 

nervous system 

Malathion, 

Parathion, 

Diazinon 

Carbamates It contains 

carbamic acid 

esters 

Inhibits 

acetylcholinesterase 

enzyme, similar to 

organophosphates 

Carbaryl, 

Aldicarb 

Pyrethroids Derived from 

natural 

pyrethrins or 

synthetically 

produced 

compounds 

It affects the nervous 

system, causing 

paralysis in insects' 

nervous systems 

Permethrin, 

Deltamethrin 

Neonicotinoids It has a 

nicotine-like 

structure 

Binds to nicotinic 

acetylcholine receptors 

in insects' nervous 

systems, causing 

paralysis 

Imidacloprid, 

Thiamethoxam 

Triazoles It contains an 

azole ring 

Inhibits ergosterol 

synthesis in fungal cell 

membranes, killing 

fungi 

Propiconazole, 

Tebuconazole 

Strobilurins It contains a 

strobilurin core 

Inhibits the respiration 

chain in fungi, leading 

to fungal death 

Azoxystrobin, 

Kresoxim-

methyl 

 

Pesticides disrupt vital activities of aquatic organisms and hence 

cause ecosystem disequilibrium; this might bring up adverse ecological 

effects in the long run. The influence of pesticides within aquatic 

ecosystems extends beyond acute toxic effects to non-target organisms; 

such substances can result in long-lasting changes at levels up to 

subpopulations (Günal et al., 2021; 2022). Among the most important 
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biotic components of an aquatic ecosystem, freshwater mussels have 

ecological importance. They are contributory to water filtration, helping 

to maintain water quality. However, the mussel is highly sensitive to 

environmental stressors, and pesticide exposure often results in severe 

perturbations in their physiological and biochemical processes. These 

disruptions may appear in various forms of biochemical response, such 

as oxidative stress, cytotoxicity, loss of enzyme activity, and 

genotoxicity. These disruptors can further cause low mussel 

reproduction that will further affect population dynamics, with cascading 

effects on the ecosystem (Arslan, 2022). Roberts (1972) furthers those 

pesticides also disrupt the reproductive systems of mussels. 

Recent studies indicate that pesticides have caused serious 

physiological and biochemical damage in freshwater mussels and pose a 

serious threat to ecosystem health (Moulton et al., 1996; Robillard et al., 

2003; Kumar et al., 2011; Bellas et al., 2014; Bolognesi et al., 2014; 

Machado et al., 2014; Arslan, 2022). In light of studies conducted so far 

in the literature, this review evaluates the impacts of pesticides in the 

respiration, digestion, reproduction, antioxidant defense, and immune 

system of mussels. It also aims to further address the biochemical 

responses of mussels and related implications at the ecosystem level. 

PHYSIOLOGICAL EFFECTS 

Effects on Respiratory Functions 

Exposure to pesticides can induce specific changes in the 

respiratory functions of freshwater mussels (Yancheva et al., 2017). 

Organophosphate pesticides have been shown to inflict adverse effects 

on the respiration apparatus of freshwater mussels and mitochondrial 

energy production in organisms. This has been further reported to disturb 

cellular energy production processes and reduce oxygen transport (Weis, 

2014). Moreover, pesticides have been proven acting as inhibitors to 

respiration enzymes, which reduce the ability of oxygen transportation 

within the cells (Yancheva et al., 2017). 

Ion Balance and Electrolyte Homeostasis Effects 

Freshwater mussels are highly sensitive to osmoregulation, and 

environmental stressors may easily tip this balance (Deaton et al., 1989; 
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Freitas et al., 2017). In this context, pesticide exposure has been a huge 

stressor that influences mussel ion balance at the cellular level by 

disturbing electrolyte homeostasis. The regulation of the concentration 

of ions intra- and extracellularly is highly important for the determination 

of cell functionality. The ion balance, according to the ions Na⁺, K⁺, Ca²⁺, 

and Cl⁻, has been maintained through the ion channels and carrier 

proteins found at the cell membrane. However, pesticide damage to these 

ion channels might lead to disruption in the ion balance, leading to 

osmotic stress and failure of cellular function (Martem'yanov, 2000). 

One of the outcomes of pesticide exposure in freshwater mussels 

is defects in the homeostasis of the two important ions, Na⁺ and K⁺. Intra- 

and extracellular concentrations of sodium and potassium stabilize the 

electrical aspects leading to normal metabolic functions within the cells. 

Pesticides increase the permeability of the cell membrane to allow 

intracellular ions to escape from the cell, hence disrupting cellular 

homeostasis (Yoloğlu, 2019).  

Moreover, Ca²⁺ ions have also been implicated in other biological 

functions such as cellular signal transduction and muscular contraction. 

Pesticides may cause a perturbation in these cell signals by interfering 

with the chemical assembly of calcium within the cell. Normally, the 

intracellular concentration of free Ca²⁺ ions are low inside the cell and 

high outside the cell. However, pesticide exposure can increase cell 

membrane permeability to calcium; intracellular Ca²⁺ levels rise and 

disrupt many biological processes in the cells, such as muscle 

contraction, protein phosphorylation, and energy production (Ermak & 

Davies, 2002; Pinto, 2015). 

Because pesticides disrupt this ion balance, they are known to 

affect cellular functions by compromising the structural integrity of the 

cell membranes. Ion imbalances can create excess membrane 

permeability with the accompanying fluid loss at a cellular level, which 

may lead to cell death (Yoloğlu, 2019). It is thought that it can have 

detrimental effects on mussel ecology and the general ecosystem for a 

long duration. 

Any disruption of ion balance may cause an increase in ATP 

consumption. Cells need to upregulate the Na⁺/K⁺ ATPase metabolism 
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to compensate for this disturbance. Pesticides have been reported to 

reduce the efficiency of Na⁺/K⁺ ATPase in mussels, thereby leading to 

an energy crisis in cells. The metabolism of Na⁺/K⁺ ATPase is crucial in 

maintaining low sodium and high potassium levels in cells. However, 

this process is metabolically energy-intensive (Palecz et al., 2005). 

Pesticide exposure disrupts the balance of ions and electrolytes, 

essential for general biological processes in mussels. This action reduces 

survival rates in mussels. An imbalance in electrolytes makes mussel 

health problematic at an individual level and reduces their filtration 

capacity, negatively affecting ecosystem functioning (Yang et al., 2017). 

Digestive Functions and Histopathological Changes 

Pesticide contamination in aquatic ecosystems can greatly harm 

the digestive systems of freshwater mussels, causing both tissue damage 

and disruption of essential digestive enzymes (Donkin et al., 1997). 

Exposure to pesticides, particularly organophosphates, has been linked 

to notable cellular changes in the digestive glands, such as degeneration, 

atrophy, and inflammation (El-Shenawy et al., 2009).  

Structural issues negatively affect nutrient digestion and energy 

metabolism, as changes in the digestive glands decrease the production 

of enzymes essential for nutrient absorption. Furthermore, research has 

indicated that pesticide exposure can lead to excessive cellular growth 

and inflammatory responses in the digestive tissues of mussels (Stara et 

al., 2020). 

Structural changes in the digestive glands may become permanent 

with chronic pesticide exposure. Pesticides are reported to cause 

permanent fibrosis in the digestive gland tissues of mussels, resulting in 

a loss of structural cellular integrity. This condition is likely to impair 

mussels' digestive functions irreversibly (Benjamin et al., 2016). 

BIOCHEMICAL EFFECTS  

Freshwater mussels have been one of those groups of organisms 

that most readily show biochemical effects from various water pollutants 

(Moulton et al., 1996). Among these, pesticides give rise to several 

biochemical processes, due to acting on their antioxidant mechanisms of 
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defense and lipid peroxidation, then leading to DNA and genetic toxicity 

(Arslan & Günal, 2023). 

Oxidative Stress and Antioxidant Defense Mechanisms 

Pesticide exposure in mussels causes a significant biochemical 

perturbation manifesting as oxidative stress. Pesticide exposure 

enhances intracellular levels of ROS, thus inducing oxidative stress. This 

destroys the integrity of basic biomolecular structures, usually 

manifested as lipid peroxidation, protein oxidation, and deterioration of 

DNA (Arslan & Günal, 2023). 

Antioxidant defenses against oxidative stress exist in the mussels, 

involving a number of enzymatic antioxidant defense systems that 

neutralize ROS—such as superoxide dismutase (SOD), catalase (CAT), 

and glutathione peroxidase (GPx). The antioxidant enzymes themselves 

may generally be inhibited by pesticides. Indeed, some evidence has 

reported possible changes linked to pesticide exposure in SOD, CAT, 

and GPx activities in mussels (Paçal et al., 2022). 

It was recorded that by inhibiting the production of such enzymes 

in antioxidant defense mechanisms, pesticides increased oxidative stress 

and caused cell damage among mussels (Günal et al., 2021). 

Effects on Superoxide Dismutase (SOD) Activity 

SOD is the defense enzyme neutralizing ROS thus preventing 

oxidative cellular damage. Inhibition of the SOD activity by pesticides 

results in intracellular accumulation of ROS in mussels and further rise 

of oxidative damage (Arslankoç et al., 2019). Various researchers 

reported that pesticides suppress SOD activity in mussel tissues, leading 

to accumulation of ROS in the cell (Al-Fanharawi et al., 2019; Serdar et 

al., 2023). 

Mitochondria have a high sensitivity to oxidative damage. Cellular 

energy production is negatively affected by reduced SOD activities since 

the superoxide radicals produced during mitochondrial respiration 

cannot be effectively intercepted. Therefore, increased intracellular 

levels of ROS initiate the mitochondrial detoxification process by 

triggering mitoptosis and mitophagy. Several studies have exhibited 

reduced SOD activities and the development of mitochondrial 
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dysfunction in mussels exposed to pesticides. This impairment can 

disrupt the balance and production of cellular energy in mussels (Melov, 

2000; Storz, 2007; Venditti et al., 2013). 

Effects on Catalase (CAT) and Glutathione Peroxidase (GPx) 

Other antioxidant enzymes that take part in the serious 

detoxification of ROS include CAT and GPx. CAT protects the cell from 

oxidative damage by converting injurious ROS into water and oxygen, 

such as hydrogen peroxide (H₂O₂) (Kurama et al., 2002). It was reported, 

on the other hand, that pesticide exposure inhibited the activity of CAT 

in mussels, leading to metabolic accumulation of hydrogen peroxide 

(Serdar, 2021). GPx, together with glutathione, reduces toxic peroxides, 

which are products of lipid peroxidation. Pesticides have been reported 

to inhibit the activity of GPx, thus increasing the rate of lipid 

peroxidation within the cell membranes and making the structure of the 

cell membrane vulnerable (Liu et al., 2024). The imbalance between GPx 

and ROS can lead to membrane damage, which, in turn, might amplify 

the cellular effects of oxidative stress. 

Moreover, de Almeida et al. (2004) reported increased GPx 

enzyme activity in mussels exposed to pesticides, leading to 

enhancement of lipid peroxidation. Lipid peroxidation interferes with the 

cell membrane structure, disturbing the intracellular functions. 

DNA disruption is among the possible side effects of pesticide 

exposure. Many exposures directly cause DNA strand breaks and 

increase further the chances of mutation (Bolognesi, 2003). Especially, 

organochlorine pesticides disrupt DNA strand breaks and induce 

chromosomal anomalies in mussels and give rise to a genotoxic impact 

that congests normal cell division, thus making cells senesce or mortality 

(Bolognesi & Cirillo, 2014). 

According to La Vecchia (2022) and Fallet (2023), pesticide 

exposure interferes with DNA methylation in mussels, leading to 

epigenetic changes. These epigenetic changes then negatively impact 

gene expression or cellular response and hence result in long-lasting and 

irreversible harm. It is also reported in the same research that inhibiting 
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the DNA repair mechanism through pesticide exposure restricts the cells' 

power to repair genetic material, raising the probability of mutation. 

Lipid Peroxidation and Cell Membrane Damage 

Lipid peroxidation is considered a biochemical process induced by 

various environmental and endogenous stressors that impairs the 

structural integrity of cellular membranes, thus confronting cellular 

functions with danger (Abdollahi et al., 2004). This oxidation of the cell 

membrane polyunsaturated fatty acids increases membrane permeability, 

disrupting intracellular homeostasis (Pamplona et al., 2002). Exposures 

to environmental pesticides is also known to accelerate the process of 

lipid peroxidation in mussels, leading to cell membrane damage (Liu et 

al., 2024). 

This increase in lipid peroxidation impairs cellular membrane 

functions, which, in turn, disrupt ion balance and intracellular energy 

production processes for the worse (Freitas et al., 2017). Various studies 

have reported increased ion permeability of cell membranes by 

pesticides through lipid peroxidation, which results in an electrolyte 

imbalance at the cellular level (Martem'yanov, 2000; Santos, 2001; 

Yaman & Ayhanci, 2021). 

Glutathione (GSH) and Detoxification Enzymes 

GSH is an important constituent of intracellular detoxification 

processes and has an important role in the regulation of oxidative stress. 

Intracellularly, glutathione scavenges for ROS, thus decreasing cellular 

destruction and maintaining intracellular homeostasis. However, 

pesticide exposure decreases glutathione levels, further debilitating 

detoxification processes in mussels (Arslan et al., 2023). Pesticides 

suppress levels of GSH, further enhancing oxidative stress, which results 

in aggravated cellular destruction in mussels (Canesi et al., 1999). 

Metallothioneins (MT) and Heavy Metal Binding Capacity 

Another biochemical effect of environmental stressors on mussels 

is related to MT (metallothioneins). MTs are considered heavy metal-

binding proteins, which protect cells from metal toxicity. Some 

pesticides can induce changes in MT levels in mussels, hence affecting 
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their defense mechanisms against environmental pollutants such as 

heavy metals (Žurga et al., 2024). According to Dondero et al. (2011), 

exposure to organophosphate pesticide chlorpyrifos suppresses the MT 

levels of mussels, leading to heavy metal accumulation followed by 

alterations in cellular MT response. Glyphosate, a well-known herbicide, 

increased the thiol levels of MT in freshwater mussels without the typical 

action of binding Zn, Cu, and Cd. These disturbances in the biochemical 

mechanism are regarded to increase the susceptibility of mussels to 

heavy metal toxicity (Dondero et al., 2011; Khoma et al., 2021). 

Pesticide contamination in aquatic ecosystems can greatly harm 

the digestive systems of freshwater mussels, causing both tissue damage 

and disruption of essential digestive enzymes (Donkin et al., 1997). 

Exposure to pesticides, particularly organophosphates, has been linked 

to notable cellular changes in the digestive glands, such as degeneration, 

atrophy, and inflammation (El-Shenawy et al., 2009).  

Structural issues negatively affect nutrient digestion and energy 

metabolism, such as changes in the digestive gland tissues decrease the 

production of enzymes. It is stated in the latest researches has indicated 

that pesticide exposure can lead to excessive cellular growth and 

inflammatory responses in the digestive tissues of mussels (Stara et al., 

2020). 

Structural changes in the digestive glands may become permanent 

with chronic pesticide exposure. Pesticides are reported to cause 

permanent fibrosis in the digestive gland tissues of mussels, resulting in 

a loss of structural cellular integrity. This condition is likely to impair 

mussels' digestive functions irreversibly (Benjamin et al., 2016). 

EFFECTS ON POPULATION DYNAMICS 

Freshwater mussels serve important organisms in aquatic 

ecosystems due to their filter-feeding nature. Considering the ability of 

pesticides to affect these organisms, effects beyond just individual health 

issues have arisen because they may considerably influence population 

dynamics. Exposure to pesticides reduces reproductive capacity 

(Aldridge et al., 2023), suppresses growth rates (Perry & Lynn, 2009), 
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induces behavioral changes (Chmist et al., 2019), and increases mortality 

rates severe at the population level (Moulton et al., 1996). 

One of the striking effects pesticide exposures has on freshwater 

mussels comes from the impacts on the reproductive system. Pesticides 

can suppress reproductive function and thereby, as a consequence, 

reduce renewal capacity in such populations (Aldridge et al., 2023). 

Whereas spermiotoxicity testing initially started with sea urchins (Dinnel 

et al., 1987), its use with other organisms was later approved by USEPA 

(2009) for ecotoxicological research. Adequate motility and viability, 

mitochondrial activity, and production of ROS are some critical 

constituents of reproductive competence (Rolton et al., 2022). 

Triclosan, a pesticide-like chemical, as indicated by Rolton et al. 

(2022), suppressed gametogenesis and caused significant reductions in 

sperm and oocyte number. This research emphasized that pesticides lead 

to reproductive failures as a result of the inhibition of the maturation of 

the gamete cells. Furthermore, research conducted by Canesi et al. 

(2011) showed that pesticides may act as endocrine disruptors with 

estrogenic effects, thereby disrupting the work of the endocrine system 

and hormonal balance. Pesticides disrupt the synthesis and/or regulation 

of sex hormones within mussels and lead to structural changes in 

reproductive organs that may culminate in reproductive failures, 

resulting in a reduction in offspring numbers. 

Pesticide exposure limits the population's renewal capacity, mainly 

by reducing the growth rate of juvenile mussels. Perry and Lynn (2009) 

studied the effects of Baylucide insecticides on apoptosis rates in 

freshwater mussels. They stated that as a result of high-dose-mediated 

suppression of apoptosis, cellular abnormalities and embryonic 

deformities occurred. Furthermore, Lindsay et al. (2010) found that 

various pesticides, such as hexazinone, 2,4-D, and phosmet, impaired 

shell growth and overall development in veliger-stage juvenile mussels, 

leading to lower growth rates and body weights. Among these, 2,4-D was 

particularly damaging, significantly reducing survival and reproductive 

rates. 

Mussels are very energetic species with regard to growth, and 

pesticide exposures may affect energy metabolism processes. He et al. 
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(2020) reported that some pesticides (DDT, diazinon, imidacloprid, 

chlorpyrifos, and malathion) lowered energy absorption in the gut and 

disturbed energy storage mechanisms within the liver, fat tissues, and 

muscles, leading eventually to a decline in growth rates and increased 

population-level stress. All these pesticides also disrupted immune 

system and pancreas functions by disturbing energy homeostasis and 

inhibiting growth hormone secretion, interfering with physiological 

development processes of mussels. 

The presence of pesticides interferes with physiological and 

biochemical processes, which characterize the living conditions of 

mussels; therefore, their populations are more likely to decline with time. 

Results showed that exposure to the hexazinone and phosmet 

significantly caused high mortality rates and growth retardation during 

the veliger stage of larvae in juvenile mussels, which resulted in 

reduction in population size (Lindsay et al., 2010). In addition, exposure 

to different groups of pesticides was reported to suppress cellular 

functions of mussels; with enhanced oxidative stress, too, the cell death 

rate is getting higher. This contributes to higher cellular damage, which 

degrades the tissues and consequently impairs the functioning of organs, 

thereby further increasing mussel mortality. Besides, pesticides are 

reported to have the ability to induce lipid peroxidation, disturbing the 

integrity of the cell membrane, which may subsequently lead to 

premature cell death (Paçal et al., 2022). 

EFFECTS ON THE IMMUNE SYSTEM 

Pesticide is a notable environmental stressor, and the immune 

system — which responds to environmental stressors — can be directly 

affected by pesticides. In mussels, immune mechanisms such as 

phagocytosis, cytotoxicity, and antioxidant defence is controlled by 

hemocytes (Günal et al., 2018). But pesticides contaminations can 

deactivate these physiologic pathways and cause immunosuppression in 

mussels (Renault, 2015). Acute exposures to the agricultural 

insecticides, fipronil and cyphenothrin, have been found to reduce total 

hemocyte counts (THCs) in freshwater mussels, while chronic exposures 

have been shown to increase THC. Contrarily, short-term exposure 
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activates this response and has been mentioned together with an immune 

system activation (Arslan, 2022; Arslan & Günal, 2023). 

ECOSYSTEM-LEVEL EFFECTS 

Among the roles of mussels in ecosystems, there are water 

filtration, food web, and habitat functions achieved through reproductive 

symbiosis (Gül, 2023). When pesticides contaminate by various ways 

such as flood, to aquatic environments, they can disrupt these vital 

functions in mussels and placing the entire ecosystem at risk. 

Mussels are critical organisms for water quality by removing both 

organic and inorganic particles from aquatic environments. 

Nevertheless, the ability to filter aquatic environments is impaired under 

pesticide contaminations. This loss of filtration may lead to negative 

changes in water quality. Therefore, there is a high probability of a higher 

concentration of suspended and dissolved matter in water, may resulting 

in the disruption of the plankton balance and indirectly in the food web 

disruption (Schultze et al., 2023). Exposure to glyphosate-containing 

herbicides such as Roundup has been shown to reduce water flow 

capacity in mussels. 

It is reported that pesticides can be passed to higher trophic level 

predators via mussels and their toxic effects can be further amplified 

during the transfer. This indirect effect can be detrimental to the health 

of other aquatic organisms and to the equilibrium of the ecosystem 

(Katagi, 2010; Tulcan et al., 2021). 

CONCLUSION AND RECOMMENDATIONS 

Pesticide effects on mussels may lead to physiological, and 

biochemical changes. Pesticides can disrupt respiratory, gastrointestinal 

and reproductive physiology, interrupting the life cycle of mussels, and 

leading to population declines. In addition, oxidative stress and DNA 

damage are increased by antioxidant defence mechanism inhibition, 

which is impairs cellular functions. The immunosuppressive effect of 

pesticides on the immune system elevates the negative health risks of 

mussels to pathogens. It is predicted that difficulties experienced by 

mussels will result in broad ecosystem trouble in the future. Careful 

management of pesticide application to minimise those effects is of 
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paramount importance together with long-term monitoring studies to 

elucidate their ecological impacts. 
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INTRODUCTION 

Aquatic environments are crucial ecosystems, rich in potential 

pharmaceutical resources and biologically active substances (Chen, 

2024). The biological resources produced and isolated from these 

environments have garnered significant research interest due to their 

pharmacological relevance (Supanekar et al., 2024). These bioactive 

substances encompass a range of compounds with properties such as 

anticancer, antibacterial, anti-inflammatory, and immunomodulatory 

effects (Xiao et al., 2022). Organisms like seaweed, sponges, corals, and 

microorganisms are valuable sources for drug discovery and 

development, offering therapeutic potential for treating various diseases 

(Chen, 2024). Their properties hold promise for developing treatments 

for diseases like cancer, infections, and neurodegenerative disorders. In 

this article, some bioactive compounds found in aquatic environments 

were aimed to be understood in terms of their biological effects and 

evaluated for their therapeutic potential in the field of health. 

SOURCES, CLASSIFICATION AND PHARMACOLOGIC 

EFFECTS OF BIOACTIVE SUBSTANCES 

Marine ecosystems consist of a rich variety of life forms, including 

microorganisms, plankton, benthic organisms, seaweed, corals, 

invertebrates, and vertebrates. This diversity is shaped by various 

ecological processes and environmental factors that affect the 

distribution and abundance of these organisms (Al-Sodany and Diab, 

2023; Biswas et al., 2023). Microorganisms in ocean environments play 

a critical role in various ecological processes, including the carbon and 

nitrogen cycles, organic matter decomposition, and the maintenance of 

ecological balance. They significantly contribute to the nutrient cycle 

and waste management necessary for the sustainability of marine 

ecosystems (Haripriyaa and Suthindhiran, 2024; Raina and Seymour 

2024; Shilky et al., 2023). Furthermore, marine life positively 

contributes to the global economy and human society by providing food, 

medicine, and other resources (Chen, 2024). 

Bioactive substances are compounds that interact with 

biomolecules in living organisms, causing physiological or biochemical 
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reactions. These substances, which can be obtained from various 

biological sources such as plants, animals, microorganisms, and marine 

organisms, play significant roles in health and disease management, 

particularly in the food industry, pharmaceuticals, and agriculture (Kang 

and Kim, 2023).  

Aquatic bioactive substances are compounds obtained from marine 

organisms, including microorganisms, algae, invertebrates, and fish 

(Senadheera et al., 2023). Aquatic bioactive substances can be classified 

based on various characteristics such as chemical composition, 

effectiveness, and roles (Ismail, et al., 2023). The marine biosphere is 

rich in components such as bioactive peptides, polysaccharides, 

polyunsaturated lipids, carotenoids, polyphenolic compounds, minerals, 

saponins, and phytosterols (Hosseini, et al., 2022).  

Bioactive peptides derived from marine organisms exhibit a wide 

range of biological functions, including antioxidant, antimicrobial, anti-

diabetic, antihypertensive, anti-inflammatory, immunomodulatory, and 

anticancer properties. These functions are influenced by the molecular 

characteristics of the peptides, such as size, shape, charge, and 

hydrophobicity. Various production methods, including enzymatic 

hydrolysis, microbial fermentation and chemical hydrolysis, contribute 

to the extraction of these peptides from sources like shellfish, mollusks, 

and algae (Hosseini et al., 2017; Ramezanzade et al., 2017; Kim and 

Wijesekara, 2010). The investigation of bioactive peptides as α-

glucosidase, α-amylase, and dipeptidyl peptidase-4 (DPP-IV) inhibitors 

offers a promising approach for managing type II diabetes. Specific 

peptides derived from various sources, including fish and shellfish, have 

shown significant inhibitory effects on DPP-IV, an enzyme crucial for 

regulating blood sugar levels. A peptide derived from oysters has 

demonstrated strong DPP-IV inhibition (Chen et al., 2024) while salmon 

hydrolysates have also exhibited strong anti-diabetic activity due to 

hydrophobic amino acid residues (Guo et al., 2024).  

Antimicrobial peptides derived from fish and other aquatic 

organisms are emerging as effective agents against bacterial pathogens, 

including the species of Listeria and Staphylococcus. These peptides 

exhibit unique antimicrobial properties and mechanisms of action, 
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making them promising alternatives to traditional antibiotics, especially 

in the context of increasing antibiotic resistance (Asif et al., 2024; 

Cervera et al., 2024; Lee et al., 2024). 

Omega-3 polyunsaturated fatty acids, which can be isolated and 

purified from marine sources through methods such as crystallization, 

distillation, and solvent extraction, are recognized for their significant 

health benefits. These benefits are largely attributed to long-chain n-3 

fatty acids such as eicosapentaenoic acid and docosahexaenoic acid 

which play important roles in cardiovascular health and inflammation 

modulation (Boyer et al., 2022; Tang et al., 2023). Studies have also 

demonstrated the oxidative stress regulation and anti-aging effects of fish 

oil and polyunsaturated fatty acids (Zhang et al., 2016). 

However, in addition to the potential therapeutic effects of these 

bioactive components, there are some potential disadvantages. For 

example, persistent organic pollutants that may accumulate in fish can 

negatively impact the health benefits of omega-3 long-chain PUFAs 

derived from fish by accumulating high levels of xenobiotics (Cui et al., 

2018). 

Algae-derived polysaccharides have biological activities such as 

antioxidant/antibacterial, antidiabetic, immunomodulatory, anti-

inflammatory, and anticancer effects (Gomaa 2024; Jagtap et al., 2024; 

Matin et al., 2024). These biological activities depend on properties such 

as molecular weight, branching structures, charge densities, 

hydrophobicity, monomer types, and bond types (Fernando et al., 2019). 

Sulfated polysaccharides (SPs) derived from marine organisms 

exhibit a broad spectrum of biological activities, offering significant 

benefits for various therapeutic and nutritional purposes. These 

polysaccharides show anticancer properties by modulating critical 

intracellular signaling pathways and enhancing apoptosis in cancer cells 

(Bhuyan et al., 2023). They are also recognized for their antioxidant, 

anticoagulant, anti-inflammatory, immunostimulatory, and antitumor 

properties, which make them valuable in various health-related fields 

(Abdelhedi et al., 2024; Lakhrem et al 2024; Wang et al., 2024). Sulfated 

polysaccharides extracted from Sargassum duplicatum effectively 

suppress colony formation in HCT-116 human colon cancer cells at 
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defined concentrations (Gomaa, 2024). Similarly, polysaccharides 

obtained from Sargassum fusiforme exhibit potent in vitro cytotoxicity 

against HepG2 human liver cancer cells and significantly inhibit tumor 

growth in vivo (Sadeghi et al., 2024). 

Fucoidans, a class of sulfated polysaccharides rich in fucose 

derived from brown seaweeds, exhibit a wide range of biological 

activities, making them significant for therapeutic applications. Their 

unique chemical structures allow them to interact with various biological 

targets. They have been shown to reduce inflammation by modulating 

immune responses in periodontal diseases, inhibit tumor growth and 

metastasis by regulating cell signaling pathways and promoting 

apoptosis in cancer cells (Zahariev et al., 2023). Additionally, fucoidans 

have the potential to protect against oxidative stress and 

neuroinflammation, making them promising agents in the treatment of 

brain disorders (Batista et al., 2023) Moreover, fucoidans can form 

biopolymer nanoparticles with cationic chitosan, enhancing drug 

delivery efficiency in oncology (Zahariev et al., 2023).  

Carrageenan, a sulfated polysaccharide obtained from red 

seaweed, showcases notable biological properties that support its 

applications in pharmaceuticals and nutrition. As a plant-based 

alternative to gelatin, it demonstrates anticoagulant, anticancer, 

immunomodulatory, anti-hyperlipidemic, and antioxidant activities, 

contributing to advancements in both dietary and biomedical fields. 

Biomedical applications include drug delivery systems and tissue 

engineering, which benefit from its immunomodulatory and antioxidant 

properties. These polysaccharides can be extracted using water or 

alkaline solutions, and their efficiency and sustainability can be achieved 

through environmentally friendly methods, such as hydrothermal 

extraction (Álvarez-Viñas et al., 2024)  

Alginate is a polysaccharide present in significant quantities within 

various species of brown macroalgae (Lone et al., 2016). The ability of 

alginate to form hydrogels enhances therapeutic efficacy by allowing 

controlled drug release (Wawszczak and Kołodyńska, 2024). With its 

moisture-retaining properties, it is ideal for wound care, promoting 

healing while preventing infection. It is widely used as a thickening and 
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gelling agent that improves the texture and shelf life of food products 

(Pournaki et al., 2024).  

Chitin, a polymer derived from marine waste such as shrimp, crab, 

and lobster shells, as well as some green algae, can also be produced 

from the cell walls of certain fungi and protozoa (Duan et al., 2018; Hu 

et al., 2016). Chitin and its derivatives can be used in the production of 

various functional materials such as membranes, films, gels, 

nanoparticles, and nanofibers. For example, chitin-based fiber materials 

have been shown to increase collagen growth, thereby accelerating 

wound healing processes (Hassen et al., 2024; Yanat and Schroën, 2023). 

Chitosan, a derivative of chitin, serves as a carrier for active 

pharmaceutical ingredients (Sarjadi et al., 2020). It has also been shown 

that chitin nanoparticles can strengthen biodegradable plastics, providing 

a sustainable alternative to traditional materials used in food packaging 

(Yanat and Schroën, 2023). In the cosmetic industry, they are being 

researched as eco-friendly substitutes for synthetic polymers (Hassen et 

al., 2024; Sarjadi et al., 2020). 

Chitosan is derived from chitin, one of the most abundant 

biopolymers in nature. It is produced through the alkaline deacetylation 

of chitin and possesses important properties such as biocompatibility and 

biodegradability. These features make chitosan a versatile material with 

a wide range of applications across various fields, including biomedical, 

environmental, and industrial sectors. Chitosan's non-toxic properties 

enable its safe use in medical applications such as drug delivery, wound 

healing, and antibacterial treatments (Thakare et al., 2024; Lingait et al., 

2023). It is also used in drug delivery systems and tissue engineering 

(Thakare et al., 2024; Hemmami et al., 2023). Chitosan is also effective 

in wastewater treatment and removal of metal ions due to its adsorption 

capability (Amor et al., 2024; Hemmami et al., 2023). 

Chito-oligosaccharides, derived from chitosan, have become 

promising candidates for therapeutic agents due to their good water 

solubility, easy absorption properties, and antibacterial, antifungal, and 

antiviral activities (Li et al., 2024; Struszczyk-Świta, 2024). They have 

been reported to show significant antitumor properties, particularly 

against cervical and pancreatic cancer cells, by inducing apoptosis and 
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inhibiting cell migration through mechanisms such as regulating 

epithelial-mesenchymal transition. Due to their biocompatibility and 

ability to enhance drug solubility, they are used in drug delivery systems 

(Li et al., 2024). Additionally, they are also described as a calcium-

binding agent that can potentially increase calcium solubility (Yu et al., 

2024). 

Carotenoids, natural pigments produced by photosynthetic 

organisms, exhibit various biological functions that contribute to human 

health. These functions are due to their antioxidant, anti-diabetic, anti-

proliferative, and wound-healing properties, which lead to significant 

effects such as improved eye health and reduced risks of chronic diseases 

like coronary heart disease and cancer (Beltrán and Wurtzel, 2024; 

Sharma et al., 2024). For example, carotenoids like lutein and zeaxanthin 

have been reported to provide protection against age-related macular 

degeneration, and regular consumption of carotenoid-rich foods has been 

associated with a lower risk of heart disease (Sharma et al., 2024). 

Fucoxanthin, a carotenoid derived from various brown algae, 

exhibits bioactive properties that make it a promising candidate, 

particularly in the management of diabetes and neurodegenerative 

diseases. It has been shown to effectively inhibit critical enzymes in 

carbohydrate metabolism, α-glucosidase and α-amylase, while 

stimulating insulin secretion. For example, studies on Sargassum wightii 

demonstrate that fucoxanthin can significantly reduce hyperglycemia in 

diabetic models and improve enzyme activity (Raji et al., 2023). In vitro 

studies show that fucoxanthin and its metabolite, fucoxanthinol, exhibit 

antioxidant properties, protecting neuronal cells from oxidative stress 

and neurotoxicity associated with neurodegenerative conditions 

(Kumarasinghe and Gunathilaka, 2024; Pruccoli et al., 2024).  

Astaxanthin, a powerful xanthophyll carotenoid obtained from 

Haematococcus pluvialis and various shellfish, is renowned for its 

antioxidant properties. Its versatile health benefits include preventing 

lipid peroxidation, scavenging reactive oxygen species, and reducing the 

expression of matrix metalloproteinases (MMPs), which play a crucial 

role in cancer progression (Xie et al., 2024). Notably, when combined 

with carbendazim, astaxanthin has shown enhanced anti-proliferative 
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effects against MCF-7 breast cancer cells, highlighting its potential in 

cancer treatment (Atalay et al., 2019; Kim et al., 2024). Astaxanthin is a 

carotenoid that can cross the blood-brain barrier, and therefore, it has 

been reported to possess various neuroprotective properties (Zhou et al., 

2019; Kusak et al., 2024). 

Marine polyphenols, especially those extracted from macroalgae 

and seaweeds, exhibit significant antioxidant properties and potential 

therapeutic effects. Phlorotannin compounds, primarily found in brown 

algae, have shown strong antioxidant and anti-inflammatory effects that 

contribute to their anticancer potential (Goya and Mateos, 2024). 

Flavonoids such as quercetin and kaempferol, found in various seaweed 

species, stand out for their superior antioxidant abilities compared to 

traditional antioxidants like alpha-tocopherol (Esmaeili 2024). 

Bromophenols are recognized for their antimicrobial and anticancer 

properties and hold potential for use in functional foods (Goya and 

Mateos, 2024). Recently, bromophenol derivatives isolated from the red 

alga Symphyocladia latiuscula have shown promising effects as a D4R 

agonist (Paudel et al., 2019). 

Seaweeds are valued for their abundance of B vitamins, including 

A, C, D, E, riboflavin, niacin, pantothenic acid, folic acid, and folate 

derivatives. Fish oils provide vitamins A, D, and E in significant amounts 

(Kim et al., 2011). Seaweeds also enhance dietary iodine levels, serving 

as a key contributor for many populations (Ficheux et al., 2023). 

Additionally, varieties like Laminaria contain calcium and potassium, 

which are crucial for various bodily functions (Blikra et al., 2024.). The 

minerals in seaweed are generally more bioavailable than those in land 

plants, increasing their nutritional benefits and potential applications in 

promoting human health) 

Calcium phosphate extraction from fish bones and scales through 

thermal treatment results in the formation of materials such as 

hydroxyapatite and biphasic calcium phosphate (Alshemary et al., 2024). 

Hydroxyapatite derived from fish scales exhibits excellent 

biocompatibility and osteogenic potential (Thomas et al., 2024). 

Hydroxyapatite is a bioceramic material very similar to the chemical 

composition and crystal structure of human bone, making it a prime 
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candidate for medical applications, especially in bone defect repair. Its 

osteo-inductive and osteo-conductive properties facilitate bone 

regeneration. It demonstrates excellent biocompatibility, promoting 

cellular adhesion and osseointegration, which are essential for successful 

implants (Mondal et al., 2023), and is used in applications for bone grafts 

and dental implants (Mysore et al., 2024). 

Fish processing by-products (scales, bones, and skin) are rich 

sources of collagen. Collagen obtained from aquatic sources offers a 

viable substitute for mammalian collagen in diverse applications, 

including wound dressings. Collagen peptides have demonstrated 

potential in managing osteoporosis and supporting bone health over time 

(Lara Juache et al., 2024). They also exhibit antioxidant properties that 

can reduce oxidative stress and inflammation (Makgobole et al., 2024). 

Due to their moisturizing and rejuvenating effects, collagen 

peptides are increasingly used in skincare products and provide 

protection against ultraviyole damage (Makgobole et al., 2024). 

Additionally, they serve as stabilizers and emulsifiers in various food 

products, enhancing texture and nutritional value (Farooq et al. 2024).  

Marine gelatin, predominantly derived from collagen-rich fish 

skins, bones, and jellyfish, exhibits promising bioactive properties, 

making it suitable for functional food products (Farooq et al., 2024; Joy 

et al., 2024). 

It demonstrates gel strength and viscosity essential for stabilizing 

emulsions and improving the texture of food products (Silviwanda and 

Naenum, 2024). With antioxidant and antimicrobial properties, marine 

gelatin is also applied in health-focused food innovations (Shaik et al., 

2024). 

Saponins found in certain marine animals and sea cucumbers have 

been reported to act as pancreatic lipase inhibitors in in vitro tests. 

Specifically, echinoside A (EA) and holothurin A (HA), saponins 

derived from the sea cucumber Pearsonothuria graeffei, have been 

shown to suppress lipase activity and exhibit anti-obesity effects (Lin et 

al., 2022; Yue et al., 2022; Wang et al., 2018).  
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Red seaweeds contain phycoerythrin, a reddish-pink pigment that 

plays a key role in photosynthesis by transferring energy to chlorophyll 

α (Sudhakar et al., 2019). 

Phycoerythrin and other pigments extracted from red seaweed 

exhibit various biological activities, including antioxidant, anti-

inflammatory, and anti-diabetic effects. Additionally, they hold 

significant potential as natural colorants in nutraceutical applications 

(Carpena et al., 2023; Ramu Ganesan et al., 2023). 

Fucosterol is the primary sterol found in brown seaweeds, whereas 

cholesterol is present in red seaweeds. Phytosterols offer numerous 

health benefits, including cholesterol-lowering effects, as well as 

antioxidant, anti-diabetic, anti-obesity, anti-atherosclerosis, anti-cancer, 

and anti-Alzheimer activities. Fucosterol has been reported to enhance 

the activity of antioxidant enzymes, such as superoxide dismutase and 

catalase (El Omari et al., 2024). It also upregulates heme oxygenase-1 

(HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways 

(El Omari et al., 2024; Meinita et al., 2021).Furthermore, it reduces 

neuroinflammation associated with Alzheimer’s disease by inhibiting 

pro-inflammatory cytokines such as   Interleukin-6 and Tumor Necrosis 

Factor- α in microglial cells. Additionally, by lowering adipocyte marker 

proteins, fucosterol inhibits adipogenesis and contributes to its anti-

obesity effects (Meinita et al., 2021). 

 

OPPORTUNITIES AND CHALLENGES  

The pharmacological properties of marine bioactive substances are 

crucial for understanding their mechanisms of action, physiological 

effects, and interactions within living organisms. These compounds 

demonstrate their pharmacological activities through various 

mechanisms, including enzyme inhibition, receptor modulation, and 

disruption of cellular processes. Understanding the metabolic pathways 

of marine bioactive substances also helps determine their bioavailability, 

pharmacokinetics, and drug interactions, thereby ensuring their efficacy 

and safety for drug development and clinical applications. 

Compounds derived from various marine organisms are 

increasingly recognized for their ability to address diverse health issues, 
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from cancer treatment to the management of autoimmune diseases 

(Selvaraj, 2024). They are being explored for their potential in 

developing new pharmaceutical agents (Supanekar et al., 2024). 

This researchs involve complex, multi-step, interdisciplinary 

processes, including isolating, identifying, and studying marine 

bioactive compounds from marine organisms. These processes aim to 

identify their biological activities, such as antioxidant, anti-

inflammatory, anticancer, and antibacterial effects, while further 

exploring their potential applications in advanced drug development, 

clinical trials, industrial applications, biotechnology, cosmetics, or 

ecological research. Despite their exciting potential, marine bioactive 

substances face challenges such as sustainability and cost, which restrict 

their broader applications. Addressing these challenges is essential for 

achieving sustainable resource management and expanding their use 

(Chen, 2024). 

 

CONCLUSION 

Marine environments are a rich and largely untapped source of 

bioactive substances with unique chemical structures and promising 

therapeutic potential. These natural compounds have demonstrated 

diverse biological activities, ranging from antimicrobial and anticancer 

effects to anti-inflammatory and neuroprotective properties. Despite 

significant advancements in the discovery and characterization of these 

substances, their clinical translation remains challenging due to complex 

extraction processes, limited scalability, and regulatory hurdles. 

Addressing these challenges is essential to harness the full potential of 

marine bioactive compounds for innovative medical applications. 

The potential medical applications of marine bioactive substances 

offer new hope for global health and sustainable development. Realizing 

this potential and creating opportunities for future research and 

applications will require dedicated efforts. Investment in marine 

bioresearch and biotechnological innovation is vital to overcoming 

barriers in drug development and ensuring the sustainability of these 

compounds. 
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INTRODUCTION 

 Rapidly developing technology in the 20th century has provided 

a better understanding of organisms and the ecosystem-organism 

relationship (Sundaray et al., 2022). In this period, called the “omics 

revolution” in science, studies can be carried out with organisms with 

special equipment (Lokman and Symonds, 2014). By determining the 

genome sequences of organisms, it has become possible to examine the 

only structure of that organism that remains unchanged throughout its 

life. By determining the expression levels of the products (such as 

protein, transcriptome, metabolite) coming out of the genes of this 

organism, it is revealed what kind of changes occur in the instantaneous 

state of the organism or in a certain life stage (such as larva, juvenile) 

(Sundaray et al., 2022). Thus, genetic markers have become one of the 

methods that can be used to determine the living conditions of organisms 

in ecosystems or their responses to ecosystem changes (Rise et al., 2019).  

Towards the end of the 20th century, at the beginning of the 

millennium, –omics technologies, which began to be used in aquatic 

ecosystems in the field of aquaculture, have now begun to be used in the 

field of aquatic toxicology. Thus, this field has acquired a new name: 

ecotoxigenomics. These methods are very important indicators in 

monitoring pollution in aquatic ecosystems. Changes occurring in the 

community, population, individual, cell, molecule, or genome levels are 

identified and allow the effects of toxic substances on environmental 

health, especially in the aquatic ecosystem, to be estimated (Revel et al.,  

2017). 

"omics" defines scientific studies that provide the highest yield in 

biological studies. These studies provide a holistic approach by 

combining individual omics technologies such as genomics, proteomics, 

transcriptomics, and metabolomics. Genomics examines the entire 

genome, while proteomics performs a comprehensive analysis of all 

proteins. Transcriptomics examines mRNAs formed from genes, while 

metabolomics covers studies involving interactions of chemical 

molecules and chemical reactions between small or large biological 

macromolecules (Nam et al., 2023). Some omics fields and targets 

applicable to environmental pollution assessment are given in Figure 1. 



AQUATIC ECOSYSTEMS IN THE ANTHROPOGENIC AGE | 214 

 

 

Figure 1. The use of omics in environmental toxicology (adapted from Ge et 

al., 2013) 

There are many different threats that aquatic ecosystems face 

today. The most important of these is the stress that occurs in aquatic 

organisms due to climate change and global warming, which cause 

changes in water quality parameters. In addition to this stress in aquatic 

ecosystems, many factors such as pesticides used in agricultural 

production, domestic and industrial areas, industrial wastes, 

pharmaceuticals, personal care products, heavy metals, plastic wastes 

cause pollution of aquatic ecosystems and affect aquatic organisms. In 

ecosystem monitoring studies, the examination of water quality 

parameters and aquatic biota are the basic factors that indicate ecosystem 

health (Machuca-Sepúlveda et al., 2023).  

These omics technologies used in environmental pollution studies 

are also used to examine pollution occurring in aquatic ecosystems. The 

primary goal of monitoring aquatic organisms as bioindicator model 

organisms is to understand the health status of the ecosystem in which 

they live, to detect early warning signals, and to determine reliable 

ranges of environmental changes or xenobiotics. Aquatic ecosystems are 
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under great threat due to direct or indirect anthropogenic activities. 

Although characterizing xenobiotics in samples taken from these 

ecosystems is important for environmental risk assessment, it is still 

insufficient. The effects of xenobiotics are examined from the cellular 

level to the population level using aquatic organisms (Nam et al., 2023). 

In this review, -omics technologies used in aquatic toxicology studies 

will be described. 

GENOMICS  

Scientific developments in the field of genetics have created the 

field of genomics. Genetics is the branch of science that studies genes 

and gene functions. Genomics is a field where genome sequences are 

documented (Solanke and Kanika, 2015). 

Studies in the field of genomics are older than other omics 

technologies in terms of environmental toxicology and therefore aquatic 

toxicology. Gene expression data allow us to examine the toxicity 

mechanisms developed by the organism and to determine their biological 

responses to xenobiotics or environmental stressors and to make 

inferences about the conditions in which the organism is located 

(Solanke and Kanika, 2015; Baettig et al., 2024).  

Although the history of genomics began in the 1800s, modern 

genomics began in the 1970s. Following the sequencing of the first 

genome strand by Frederick Sanger, genomic studies progressed at an 

increasing pace with the development of automated DNA sequencing 

and polymerase chain reaction techniques. The completion of the 

genomes of the Human Genome Project and model organisms 

(Escherichia coli, Saccharomyces cerevisiae, Caenorhabditis elegans, 

Drosophila melanogaster, Danio rerio, Arabidopsis thaliana, Mus 

musculus) constituted important parts of genomic studies (Solanke and 

Kanika, 2015). With the development of technology, the genetic codes 

of many aquatic organisms have been studied using high-throughput 

next-generation sequencing (NGS) in the field of genomics (Nam et al., 

2023). 

Genomics studies on aquatic organisms taken from aquatic 

ecosystems or tested under controlled laboratory conditions are shown in 

Table 1.
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PROTEOMICS  

Proteins, one of the most studied biological macromolecules in 

aquatic organisms, are particularly effective on the taste and nutritional 

values of the organism in aquatic living culture. In traditional protein 

studies conducted with living organisms in aquatic ecosystems, aquatic 

living culture or aquatic toxicology, the amount of protein contained in 

the organism, amino acid composition, the role of enzymes, and the 

content of antioxidant substances are determined. A new perspective has 

developed in protein studies with proteomics studies. Proteomics, which 

allows the examination of post-transcriptional modification systems, 

reveals how living organisms respond under the influence of xenobiotics 

(Wang et al., 2023b). Therefore, proteomics is the measurement of whole 

protein in a cell or tissue and is used to analyze the biological responses 

of aquatic organisms to various xenobiotics (Rise et al., 2019). 

Proteomic studies include three main technologies: 

electrophoresis, chromatography, and mass spectrometry. The results 

obtained from these three technologies are interpreted through 

bioinformatics. Following sampling from aquatic organisms, the 

resulting protein mixtures are separated by electrophoresis or 

chromatographic means and prepared for mass spectrometry. Using mass 

spectrometry, the protein content of the organism is identified 

(Andreeva, 2023). Apart from these three methods, isobaric methods that 

provide label-free quantitative relative and absolute protein 

identification have also been developed in recent years. With these 

methods, proteins can be identified, and the relative concentration of 

proteins can be measured (Meng et al., 2023).  

Proteomics studies on aquatic organisms taken from aquatic 

ecosystems or tested under controlled laboratory conditions are shown in 

Table 2.



A
Q

U
A

TI
C

 E
C

O
SY

ST
EM

S 
IN

 T
H

E 
A

N
TH

R
O

P
O

G
EN

IC
 A

G
E 

| 
21

8
 

 T
a
b

le
 2

. 
T

h
e 

p
ro

te
o
m

ic
s 

st
u
d
ie

s 
in

 t
h
e 

aq
u
at

ic
 t

o
x
ic

o
lo

g
y

 

O
rg

a
n

is
m

s 
C

o
n

d
it

io
n

 
K

ey
 r

es
u

lt
s 

R
ef

er
en

ce
s 

T
h
a
la

ss
io

si
ra

 

p
se

u
d
o
n
a
n
a

 

L
o
w

 a
n
d
 h

ig
h
 C

O
2

  
L

o
w

 
C

O
2
 

en
v
ir

o
n
m

en
t 

re
su

lt
ed

 
in

 
fe

w
er

 
ca

rb
o
n
 

ac
q
u
is

it
io

n
 

en
zy

m
es

, 
h
ig

h
 

n
it

ro
g
en

 
m

et
ab

o
li

sm
 

en
zy

m
es

 
an

d
 

o
n
ly

 
o
n
e 

o
f 

th
e 

ch
lo

ro
p
la

st
 

ta
rg

et
 

p
ro

te
in

s.
 

In
cr

ea
se

d
 

C
al

v
in

 
C

y
cl

e 
p
ro

te
in

s 
w

er
e
 

o
b
se

rv
ed

 i
n
 h

ig
h
 C

O
2

 e
n
v
ir

o
n
m

en
t.

 

C
le

m
en

t 
et

 a
l.

, 
2
0
1
7
 

C
h
lo

re
ll

a
 s

p
. 

A
lp

h
a-

cy
p
er

m
et

h
ri

n
 

5
3
 
p
ro

te
in

s 
w

er
e 

id
en

ti
fi

ed
 
th

at
 
sh

o
w

ed
 
d
if

fe
re

n
ti

al
 

ac
cu

m
u
la

ti
o
n
 

w
it

h
 

su
b
st

an
ce

 
ex

p
o
su

re
 

in
 

im
p
o
rt

an
t 

ce
ll

u
la

r 
m

et
ab

o
li

c 
ev

en
ts

 
su

ch
 

as
 

p
h
o
to

sy
n
th

es
is

, 

ca
rb

o
h
y
d
ra

te
 

m
et

ab
o
li

sm
, 

ce
ll

 
d
iv

is
io

n
, 

an
d
 

li
p
id

 

m
et

ab
o
li

sm
. 

C
h
an

u
 e

t 
al

.,
 2

0
2
3
 

D
a
n
io

 r
er

io
 

(e
m

b
ry

o
) 

B
en

zy
l 

b
en

zo
at

e
 

A
 t

o
ta

l 
o
f 

8
3
 d

if
fe

re
n
ti

al
ly

 e
x
p
re

ss
ed

 p
ro

te
in

s 
(4

9
 u

p
-

re
g
u
la

te
d
 a

n
d
 3

4
 d

o
w

n
-r

eg
u
la

te
d
) 

w
er

e 
id

en
ti

fi
ed

 d
u
e
 

to
 s

u
b
st

an
ce

 e
x
p
o
su

re
. 
T

h
es

e 
p
ro

te
in

s 
w

er
e 

fo
u
n
d
 t
o
 b

e 

in
v
o
lv

ed
 

in
 

d
if

fe
re

n
t 

b
io

lo
g
ic

al
 

ac
ti

v
it

ie
s 

in
cl

u
d
in

g
 

tr
an

sl
at

io
n
, 

am
id

e 
b
io

sy
n
th

et
ic

 p
ro

ce
ss

, 
li

p
id

 t
ra

n
sp

o
rt

, 

st
re

ss
 r

es
p
o
n
se

 a
n
d
 c

y
to

sk
el

et
al

 a
ct

iv
it

y
. 

K
w

o
n
 e

t 
al

.,
 2

0
2
3
 

A
lo

sa
 p

se
u
d
o
h
a
re

n
g
u
s,

 

M
yo

xo
ce

p
h
a
lu

s 

th
o
m

p
so

n
ii

, 

S
a
lv

el
in

u
s 

n
a
m

a
yc

u
sh

 

P
er

- 
an

d
 

p
o
ly

fl
u
o
ro

al
k
y
l 

su
b
st

an
ce

s 
(P

F
A

S
) 

E
ff

ec
ts

 o
f 

P
F

O
S

 o
n
 P

ro
te

in
s 

O
b
ta

in
ed

 f
ro

m
 f

is
h
 s

er
u
m

 

p
ro

te
in

s.
 P

F
O

S
-e

x
p
o
su

re
 w

as
 f

o
u
n
d
 t

o
 c

o
n
ta

in
 s

im
il

ar
 

se
ru

m
 p

ro
te

in
s 

in
 a

ll
 t

h
re

e 
fi

sh
 s

p
ec

ie
s.

 A
lb

u
m

in
 w

as
 

fo
u
n
d
 t

o
 b

e 
o
b
se

rv
ed

 o
n
ly

 i
n
 S

a
lv

el
in

u
s 

n
a
m

a
yc

u
sh

. 

A
p
o
li

p
o
p
ro

te
in

s 
w

er
e 

fo
u
n
d
 t

o
 b

e 
th

e 
p
ri

m
ar

y
 s

er
u
m

 

p
ro

te
in

 f
o
r 

th
e 

o
th

er
 t

w
o
 s

p
ec

ie
s.

 

P
o
in

t 
et

 a
l.

, 
2
0
2
3
 

T
a
b

le
 2

. 
T

h
e 

p
ro

te
o
m

ic
s 

st
u
d
ie

s 
in

 t
h
e 

aq
u
at

ic
 t

o
x
ic

o
lo

g
y
 (

co
n
ti

n
u
e)

 



21
9 

| 
A

Q
U

A
TI

C
 E

C
O

SY
ST

EM
S 

IN
 T

H
E 

A
N

TH
R

O
P

O
G

EN
IC

 A
G

E
 

 
O

rg
a
n

is
m

s 
C

o
n

d
it

io
n
 

K
ey

 r
es

u
lt

s 
R

ef
er

en
ce

s 
D

a
n
io

 r
er

io
 

(e
m

b
ry

o
) 

C
o
p
p
er

 
T

h
e 

in
cr

ea
se

 i
n
 t

h
e 

d
u
ra

ti
o
n
 o

f 

co
p
p
er

 e
x
p
o
su

re
 w

as
 o

b
se

rv
ed

 

to
 c

au
se

 h
ig

h
er

 p
ro

te
o
m

e 

d
if

fe
re

n
ti

at
io

n
 i

n
 f

is
h
 e

m
b
ry

o
s.

 

A
p
ar

t 
fr

o
m

 o
x
id

at
iv

e 
st

re
ss

, 

ce
ll

 r
es

p
ir

at
o
ry

 e
v
en

ts
 a

n
d
 

n
eu

ro
tr

an
sm

is
si

o
n
, 

p
ro

li
n
e,

 

g
ly

ci
n
e 

an
d
 a

la
n
in

e 
am

in
o
 

ac
id

s 
w

er
e 

sh
o
w

n
 t

o
 c

au
se

 

d
if

fe
re

n
ti

al
ly

 e
x
p
re

ss
ed

 

p
ro

te
in

s.
 

G
re

en
 e

t 
al

.,
 2

0
2
4
 

D
a
n
io

 r
er

io
 

 

G
ly

p
h
o
sa

te
 a

n
d
 i

ts
 m

et
ab

o
li

ts
 

am
in

o
m

et
h
y
lp

h
o
sp

h
o
n
ic

 a
ci

d
 

P
ro

te
o
m

e 
ch

an
g
es

 w
er

e 

o
b
se

rv
ed

 i
n
 c

el
lu

la
r 

re
sp

ir
at

io
n
 

ev
en

ts
, 

ca
rb

o
h
y
d
ra

te
 a

n
d
 l

ip
id

 

m
et

ab
o
li

sm
 r

ea
ct

io
n
s 

to
 

su
b
st

an
ce

 e
x
p
o

su
re

. 

M
o
ro

zo
v
 a

n
d
 Y

u
rc

h
en

k
o

, 
2
0
2
4
 

R
h
a
m

d
ia

 q
u
el

en
 

L
o
w

 a
n
d
 h

ig
h
 t

em
p
er

at
u
re

 

le
v
el

s 
It

 w
as

 o
b
se

rv
ed

 t
h
at

 

te
m

p
er

at
u
re

 c
h
an

g
e 

ca
u
se

d
 

ch
an

g
es

 i
n
 4

2
 p

ro
te

in
s 

in
 

fe
m

al
e 

fi
sh

 a
n
d
 6

2
 i

n
 m

al
e 

fi
sh

. 

V
ic

en
ti

n
i 

et
 a

l.
, 

2
0
2
4
 



AQUATIC ECOSYSTEMS IN THE ANTHROPOGENIC AGE | 220 

 

TRANSCRIPTOMICS  

Messenger RNA, ribosomal RNA, transfer RNA, and other non-

coding RNA molecules within the cell all make up the transcriptome of 

a cell (Solanke and Kanika, 2015). Transcripts are biomarkers used as an 

early diagnostic test in that they generate sensitive responses to any 

substance exposure or environmental conditions, unlike the genome 

(Joseph, 2017).  

Transcriptomics is a technology that studies transcriptomes that 

occur during the transcription process within the protein synthesis 

process within the normal metabolism of the cell. Transcriptomic 

responses obtained from organisms taken from natural habitats or from 

organisms in controlled experiments in the laboratory environment are 

the responses of the cells and therefore the organism to these stress 

factors (Jeffrey et al., 2023).  

Transcriptomic analysis emerged with the development of large-

scale and high-throughput methods. It allows the expression of all genes 

in a sample and the detection of genes that are expressed differently 

between different samples. The methods used in transcriptomic analysis 

include quantitative real-time PCR and microarray analysis (Solanke and 

Kanika, 2015). High-throughput RNA sequencing technology enables 

comprehensive analysis of genes differentially expressed under different 

environmental conditions, revealing the entire transcriptome of 

organisms (Liu et al., 2023).  

Transcriptomics studies on aquatic organisms taken from aquatic 

ecosystems or tested under controlled laboratory conditions are shown in 

Table 3.
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METABOLOMICS  

Metabolomics is a method based on the qualitative and quantitative 

investigation of metabolites obtained from all samples in a biological 

system from cell to organism (Bedia, 2022). Metabolomics is an omics 

technology that studies endogenous low molecular weight (<1000 Da) 

metabolites including carbohydrates, fatty acids, organic acids present in 

a biological sample (Olesti et al., 2021; Tian et al., 2024). Unlike other 

omics technologies, it is a method close to the cellular phenotype (Olesti 

et al., 2021).  

In environmental science research, metabolomics is an 

ecotoxicological tool used to characterize the effects of abiotic stress and 

xenobiotic substances on ecosystem health (Bedia, 2022). The European 

Centre for Chemical Ecotoxicology and Toxicology showed in 2016 that 

omics technologies are not widely used in hazard assessment. 

Subsequently, thanks to the risk assessment research derived from 

metabolomics studies, the draft Metabolomics Standards Initiative in 

Toxicology was published as a standard facilitating the use of 

metabolomics (Olesti et al., 2021). 

Measurements of metabolites are performed using nuclear 

magnetic resonance (NMR), gas chromatography-mass spectrometry 

(GC-MS), and liquid chromatography–mass spectrometry (LC-MS) 

instruments. In the analyses performed with these instruments, data 

obtained from GC-MS have higher throughput (Nguyen and Alfaro 

2020; Huang et al., 2021). 

Metabolomics studies on aquatic organisms taken from aquatic 

ecosystems or tested under controlled laboratory conditions are shown in 

Table 4.
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MULTIOMICS  

Multi-omics approaches are high-throughput methods for studying 

biological cellular events developed by an aquatic organism against 

xenobiotic or physicochemical parameters (Zhou et al., 2023).  

Environmental factors and xenobiotic substances affect the genetic 

and epigenetic mechanisms of an organism, causing changes in the 

global gene expression profile. Environmental factors and xenobiotic 

substances first interact with the genetic material DNA in the living 

being and cause DNA damage through DNA adduct formation or 

mutation. Epigenetic mechanisms affect the gene expression profile 

through effects such as DNA methylation and histone modification 

(Joseph, 2017). The detection of peptides and proteins and the 

acquisition of transcripts form the basis of other omics technologies. The 

response of the organism to any stress exposure can be examined with 

single omics technologies as well as with multiple omics technologies, 

allowing more comprehensive results to be obtained (Canzler et al., 

2020). 

Data from different omics technologies are used to 

comprehensively analyze complex biological interactions (John Martin 

et al., 2024). The goals of toxicity studies are to prevent or manage 

adverse health effects on the organism by comprehensively studying the 

basic mechanisms, especially in xenobiotic-induced toxicity (Joseph, 

2017).  

Multiomics studies on aquatic organisms taken from aquatic 

ecosystems or tested under controlled laboratory conditions are shown in 

Table 5.
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CONCLUSION  

The two most worrying problems encountered are the changes in 

physicochemical parameters that occur due to changing environmental 

conditions in aquatic ecosystems, exposure to xenobiotic substances by 

anthropogenic activities, and the effects on abiotic and biotic elements 

of water. For these reasons, aquatic ecosystem health needs to be 

examined comprehensively. Basic studies in the field of aquatic 

toxicology constitute biomarkers used in the examination of aquatic 

ecosystem health. Depending on the development of technology, the 

effects of parameters that threaten aquatic ecosystem health on aquatic 

organisms in toxicological studies are explained with the applications of 

omics technologies. In the studies, it has been shown that the use of 

single-omics technology and multi-omics technologies yield 

comprehensive results on aquatic organisms and therefore on the aquatic 

ecosystem. In the future, it is foreseen that individual-omics technologies 

and especially multi-omics technologies will replace standard 

procedures in environmental risk assessment studies. 
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INTRODUCTION 

Many scientists have worked hard for the last 50 years to develop 

the necessary tools and methods for sequencing deoxyribonucleic acid 

(DNA) and ribonucleic acid (RNA) molecules, and they are continuing 

their research. There is much research to identify nucleic acid residues 

in biological samples. Uncovering the DNA sequence of any species has 

been an important step towards understanding the molecular origin of the 

organism throughout life. Any living thing has a specific order that 

defines its characteristics, such as who it is, how it should behave, and 

how it adapts to changing environmental conditions. Two of these 

methods are Sanger and Next Generation Sequencing (NGS), 

respectively. After sequence analysis was introduced in 1975, many 

changes have occurred with large-scale parallel sequencing and de novo 

sequencing (Liu et al., 2012). Sanger sequencing has not only formed the 

basis of new approaches, but has also supported the verification of 

sequences, experimental monitoring, and many phylogenetic analyses. 

In this sequencing, amplified or complementary DNA is first ligated to 

an oligonucleotide primer and then extended by the enzyme DNA 

polymerase with a mixture of four deoxynucleotide triphosphates 

(dNTPs) or a chain-terminating dideoxynucleotide triphosphate 

(ddNTP). The extension reaction is stopped by adding the rate-limiting 

ddNTP and DNA fragments of varying lengths are then obtained (Sanger 

1975; Crossley et al., 2020). With the discovery of NGS, it has enabled 

significant steps to be taken, especially in genomic research, and the 

analysis of RNA and DNA molecules in a cost-effective manner and 

highly efficient. NGS has become a fundamental tool in many 

interdisciplinary studies ranging from basic biology to clinical diagnosis. 

With the advancement of this technology, it has accelerated genomic 

advances in many different fields. NGS provides extensive information 

on genetic variations, genome structure, gene expression profiles, and 

epigenetic modifications by rapidly sequencing millions of DNA 

fragments simultaneously. In addition, the increase in genomic research 

areas with the advancement of NGS technologies has facilitated studies 

in different areas such as the detection of cancer genomics and rare 

genetic diseases. This technology has provided great convenience for 
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epigenomics, metagenomics and transcriptomics studies and has 

provided new opportunities for understanding topics such as genetic 

diversity, epigenetic modifications and microbial diversity (Vaser et al., 

2017; Satam et al., 2023). It will also be important for future research to 

identify disease-causing variants, uncover new drugs, and shed light on 

the developmental processes of tumors. 

This book chapter will briefly introduce the basis, history, and 

principles of Sanger sequencing and the principles and platforms 

available for NGS, and will include case studies on aquatic organisms. 

SANGER SEQUENCING 

In 1953, the structure of DNA was discovered and it became clear 

that the genetic code is part of our life. This discovery led to new ideas 

that DNA should be sequenced. It took an average of a quarter of a 

century to build on these ideas and develop first-generation DNA 

sequencing techniques. The first DNA sequencing (1968) was performed 

15 years after the discovery of the DNA double helix. DNA sequencing 

outputs have been increasing, and molecules of 200 kb or larger (human 

cytomegalovirus) have been sequenced, resulting in bioinformatics and 

computational analysis. Sequencing efforts have increased and reached 

new heights with the launch of the Human Genome Project, which led to 

the establishment of the first "sequencing factory" in 1992. In 1995, the 

first bacterial genome was sequenced, followed by other sub-bacterial, 

archaebacterial and eukaryotic genomes and human genome sequence 

was published in 2001. However, more innovation is needed before 

many can reach what many call the “thousand-dollar genome.” Sanger's 

introduction of the "pros and cons" of DNA sequencing later pioneered 

the next generation of methods (Sanger and Coulson, 1975, Liu et al., 

2012). The color-coded sequencing technologies and the timeline of their 

development processes are given in Figure 1. Polyacrylamide gels have 

been used to separate the products of DNA polymerase synthesis to 

increase chain length, thus providing the key to progress (Hutchison, 

2007).  

Sanger sequencing is important in many fields, such as medicine 

and the environment, due to its sensitivity, reliability, and ability to 
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sequence even tiny amounts of DNA. It is also used to identify genetic 

disorders, establish biological connections between individuals, and 

investigate drug metabolism in areas such as forensic medicine (Verma 

et al., 2017). 

 
Figure 1. Timeline of sequencing technologies and their development 

processes coded in different colors according to generations (Sun and 

Zhu, 2022). 

It was developed and automated by Applied Biosystems over the 

years (1987), thus paving the way for the Human Genome Project. 

Despite costing $10 million and additional advances allowing for human 

genome sequencing, the cost, time, and technology have increased 

considerably (Hu et al., 2021). It was obvious that new technologies 

needed to be developed and used to improve sequencing methods. NGS 

technologies, which have serious importance in sequencing data outputs 

and for the continuation of biomedical research, were introduced 

between 2004 and 2006 (Mardis, 2013). This was performed with an 

important distinguishing feature of NGS, regardless of sequencing 

properties and high-throughput sequencing platform. 
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Sanger sequencing data analysis 
Sanger sequencing is also very important in the life sciences, 

which, together with data on nucleic acids, provides a better 

understanding of cellular mechanisms and some diseases. The first 

Sanger sequencing projects focused on sequencing very small genomes 

(∼5000 base pairs) or single genes. A computational package developed 

by Sanger's laboratory at the Medical Research Council (MRC) was 

developed by Rodger Staden (Staden et al., 1999). This package allowed 

for the random sequencing of smaller DNA fragments from a much 

larger DNA source. It allows the reconstruction of the entire sequence, 

which allows computational overlaying of larger input sources. The 

Staden package has been compiled and made more widely available, 

especially for easy use on Unix operating systems. With the combination 

of the Staden Package, approximately 10 times larger genomes were 

sequenced than was possible in the first phase (Jarvie, 2005; McCombie 

et al., 2019). Sequencing projects have focused on much larger genomes 

and much longer DNA sequences.  The staden package has been replaced 

by the phred-phrap-consed package. Phred provides basic statistics for 

Sanger reads, phrap is used for read assembly, and consed is used for an 

image editing program (Lander et al., 2001). 

Since the introduction of Sanger sequencing, it has taken about 25 

years (1977-2004) to complete the human genome reference sequence. 

During this period, significant technological advances have been made 

that have enabled large-scale projects to be completed, and sequencing 

has become widely used. However, sequencing and annotating genomes 

with Sanger has still been a significant and costly endeavor requiring 

specialized staff and infrastructure, but this scenario changed in 2005 

(Margulies et al., 2005). The method requires DNA polymerase, single-

stranded DNA, four dNTPs, and a ddNTP. Complementary DNA 

synthesis is executing by DNA polymerase with dNTPs and the enzyme 

reaction is terminated when ddNTPs are present. Sequence length 

optimizations of the fragments obtained after the reaction are provided 

by testing different ddNTP/dNTP ratios. According to the dNTP data, 

the sequencing products are separated on the gel and the full DNA 

sequence is analyzed for the result (Vietina et al., 2013). The discovery 
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of new mechanisms and concepts in molecular biology has opened new 

doors in almost every field of life sciences and created its own needs for 

sequencing technologies. As a result, a new method for DNA 

sequencing, the next-generation sequencing method, has emerged. 

NEXT-GENERATION TECHNOLOGY (NGS) 

NGS technology has been further developed in recent years and 

has become an important topic for gaining information about topics such 

as genome diversity, genetic and epigenetic regulators, and nuclear 

structure. Unlike microarray techniques, array-based applications can 

determine the nucleic acid sequence of a complementer DNA (cDNA) 

molecule or a specific DNA. For example, the Human Genome Project 

was one of the first significant attempts at DNA sequencing. This 

technology was used in the Human Genome Project, which lasted about 

cost 3 billion dollars and 13 years, and was completed in 2003. It is also 

used as a chain termination method. NGS short read, a massively parallel 

sequencing technique, differs fundamentally from Sanger sequencing, 

which uses capillary electrophoresis. In particular, it has led to NGS 

NGS, which has introduced significant innovations in sequencing 

capabilities, allowing much more data to be provided at a significantly 

lower cost. "High-throughput sequencing" is widely used in various 

contemporary sequencing technologies. Sanger sequencing of DNA and 

RNA has been used especially in molecular biology and genomics 

researchThis technology has become widely used because it can achieve 

much faster results compared to Sanger technology 

(Rodriguez and Krishnan, 2023). 

Since the emergence and development of NGS, technology has led 

to significant steps in the biological sciences. It has provided a strong 

step for scientific interdisciplinary studies from gene to genome-wide 

research. Thanks to this step, researchers have been able to ask almost 

any question under headings such as the genome, epigenome, and 

transcriptome of a living being. Today, NGS is used in many different 

fields such as drug discovery, biotechnology, forensic science, 

evolutionary biology, and environmental biology, and it is predicted that 

its use will explode in the future. 
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Whole Genome Sequencing (WGS) 

In the first phase, NGS enabled millions of DNA fragments to be 

sequenced in parallel on solid phases or in small vesicles. The throughput 

of NGS technology increased as it was realized that it was feasible to 

sequence much smaller fragments of a selected genome, and studies have 

been carried out regularly since 2005. This eventually became possible 

in 2010 and led to WGS, which was approved by the FDA in 2018 

(Margulies et al., 2005; Metzker, 2010). Genomic DNA and whole 

genome sequencing workflow is given in Figure 2. Because of user 

characteristics, it is necessary to distinguish between short and long read 

sequencing. Each sequencing platform has its advantages. From the 

user's perspective, it is most logical to distinguish between short and 

long-read sequencing. While short reads can read <300 base pairs (bp). 

But long-read sequencing can produce reads from 10 kbp to several 

megabases, depending on the technology. Also, long-read sequencing is 

used to better detect complex variants by resolving larger haplotypes. 

When comparing the two methods, short-read sequencing is preferred for 

detecting much smaller variations. This is due to the high accuracy and 

speed of sequencing for smaller or larger variants (Kwong et al., 2015; 

Choo et al., 2023). 

  
Figure 2. Whole genome sequencing (Kwong et al., 2015).  

Considering the studies conducted significant efforts have been 

made to sequence the entire genomes of many fish species in the aquatic 
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ecosystem. With the emergence and development of NGS technologies, 

it has made significant contributions to the detection of genetic traits, 

single nucleotide polymorphisms, or microsatellites at the transcriptome 

or genome level in various fish species (Santos et al., 2015). WGS 

provides significant opportunities to identify genes with many important 

characteristics. Single nucleotide polymorphisms (SNPs), which are also 

one of the important reasons why individuals of the same species have 

different characteristics from each other, are also important for genetic 

diversity. SNPs also allow researchers to address challenges that may 

arise regarding the sustainability of aquaculture research (Montes et al., 

2013; Kumar and Kocour, 2017). 

 

Whole Exome Sequencing (WES) 

Using the exome sequencing method, protein coding regions in the 

human genome were sequenced by whole sequence analysis. Exomes are 

estimated to carry a large portion of mutations, approximately 85%, that 

have important effects, especially in determining disease-related traits 

(Majevski et al., 2011). Also, exonic mutations have been shown in 

studies to cause the vast majority of single-gene diseases (Botstein and 

Risch, 2003; Kuhlenbäumer et al., 2011). These values make it difficult 

to identify disease-causing mutations in non-coding regions. But they 

confirm the advantages and growing success of exome sequencing for 

many single gene diseases. Exome sequencing has contributed major to 

the identification of Mendelian disease genes. Since its introduction, it 

has grown in importance (Bamshad et al., 2011). Large scale genome 

and exome sequencing projects have not only provided information 

about the variants but have also shown that approximately 20 genes in 

the human genome are completely inactivated (Genes, 2004). In the last 

few years NGS has been increasingly preferred to address human studies 

as well as ecotoxicological research questions (Ordas et al., 2011; 

Petersen et al., 2017). 
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Targeted Sequencing 
The first genome was sequenced using the Roche/454 NGS 

platform. This sequencing was completed in two months by James D. 

Watson, with contributions from Wheeler and other scientists. WGS 

examines the including coding, non-coding and entire genome, DNA, 

and also aims to discover new and unknown genomic variants for some 

targeted diseases (Wheeler et al., 2008; Pei et al., 2023). WGS is widely 

used in cancer genome sequencing and provides data for both diagnosis 

and treatment of today's cancer diseases. When comparing the two 

methods, it can be seen that targeted sequencing is separated into specific 

genes and coding regions with sequencing depth in genome. It has been 

reported that these target genes and regions are closely related to the 

clinical and pathogenesis of diseases. TS sequencing was developed 

specially to detect and follow cancer-related gene mutations and somatic 

changes and schematic representation of the targeted sequence is given 

in Figure 3 (Pei et al., 2023). 

 
Figure 3. Schematic representation of targeted sequencing (Pei et al., 2023). 

Targeted sequencing is divided into two groups: amplicon-based 

and capture-based. Primers designed to amplify only the regions of 

interest before library construction are used in amplicon-based 

sequencing. Capture-based DNA is first fragmented. Targeted regions 

are then amplified with hybridization oligonucleotide arrays coupled to 

biotinylated probes, isolating the remaining genetic material 

(Samorodnitsky et al., 2015). The cheaper of the two technologies is 

amplicon-based enrichment. This method allows for a higher number of 

target reads, but the area of these regions is more uniform than with 
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hybrid sequencing (Hung et al., 2018). Some amplicon platforms attempt 

to retain potential domain questions by using specific primers so that 

matching fragments can be amplified in a single PCR reaction. Hybrid 

capture is known to produce much fewer PCR copies than amplicon 

enrichment (<40%~80%) (Samorodnitsky et al., 2015; Schenk et al., 

2017). These duplications are much easier to remove from a 

computational perspective because the random shearing of DNA in 

hybrid capture may reduce the probability that these two important 

fragments will crossover and align to the same genomic coordinates, 

compared to identical amplicons produced by amplicon platforms. 

However, the long bait sequences favored in hybrid capture allow for 

higher specificity when selecting regions. For small-scale experiments 

where sample size or cost are important factors, amplicon-based 

platforms are preferred (Bewicke-Copley et al., 2019). 

RNA Sequencing (RNA-Seq)  

Correlating genotypes with phenotypes is one of the fundamental 

elements for regulating gene expression. The synthesis and maturation 

of RNAs are tightly monitored and controlled, resulting in complex gene 

expression that drives biological processes. At the same time, they must 

be robust and flexible to allow rapid adaptation to genetic perturbations 

or environmental problems. In genetic information can be modified by 

environmental factors and characterize the phenotype (Kukurba and 

Montgomery, 2015). The transcription of genes into RNA molecules 

regulates biological activities within the cell and determines cell identity. 

RNA molecules, known as transcriptomes, are important for 

understanding the functional properties of the genome, development and 

disease. The transcriptome has a complex structure and includes multiple 

coding and noncoding RNA types. When RNA molecules are examined, 

it is known as a simple intermediate between genes and proteins, as well 

as being the basic dogma of molecular biology. Therefore, messenger 

RNAs (mRNA) have been the most frequently studied RNA type due to 

their ability to encode proteins via the genetic code. There is another 

diverse group of functional noncoding RNA (ncRNA) molecules. Most 

of the ncRNAs we know perform essential cellular functions, such as 
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transfer RNAs, small nuclear RNAs (snRNAs) involved in splicing, 

ribosomal RNAs involved in mRNA translation, and small nucleolar 

RNAs (snoRNAs) involved in the modification of rRNAs. In recent 

years, new RNA classes have been discovered that enrich the domains 

of ncRNAs. These are small noncoding RNAs, including piwi-

interacting RNA (piRNA) and microRNA (miRNA). Another important 

class of ncRNAs are long noncoding RNAs (lncRNAs), both of which 

regulate gene expression at the post-transcriptional level. This group was 

first identified by large-scale sequencing of cDNA libraries in mice, and 

many molecular functions for lncRNAs have been discovered, chromatin 

remodeling, including transcriptional control, post-transcriptional 

processing, but the majority of these remain uncharacterized (Stefani and 

Slack, 2008; Guttman et al., 2009; Mercer et al., 2009). 

Several methods have been developed to enable genome-wide 

measurement of transcriptomic gene expression. Early transcriptomic 

studies were performed using high-throughput and low-cost 

hybridization-based microarray technologies (Mutz et al., 2013). These 

methods have some limitations, such as the need to know in advance the 

sequences to be analyzed and the limited ability to accurately measure 

genes with low or very high expression. However, due to its relatively 

low throughput, it has not been preferred for measuring transcripts 

(Casneuf et al., 2007). Despite these methods limitations, serial analysis 

of gene expression and cap analysis of gene expression methods have 

been developed to measure expression levels more precisely and achieve 

higher throughput. Directly measuring the number of labeled sequences 

corresponding to the number of mRNA transcripts provides a significant 

advantage over measuring analogous intensities as in array-based 

methods. However, these assays cannot be used for new gene discovery. 

The need for large amounts of input RNA, coupled with the high cost of 

cloning sequence tags and automated Sanger sequencing, has limited 

their use (Velculescu et al., 1995; Shiraki et al., 2003). 

Next-generation sequencing, along with RNA analysis by 

sequencing cDNA, has revolutionized transcriptomics (Harismendy et 

al., 2009). RNA-Seq has provided important data in understanding the 

complex and dynamic structure of the transcriptome and provides more 
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detailed data on gene expression, allele-specific expression and 

alternative splicing. Recent advances have detailed the transcriptome 

under different pathological and physiological conditions, from samples 

preparation to bioinformatics analysis and sequencing platforms (Figure 

5). 

 
Figure 4. The general workflow of RNA-Seq.  

 

As sequencing technologies advance day by day, they will need to 

evolve to support current applications and resolve technical errors. As 

sequencing of small amounts of RNA becomes possible in the 

laboratory, advanced statistical applications will be needed to obtain 

clear results. In addition, combining WGS with RNA-Seq in much larger 

sample types will provide more data on genetic regulators. 

Bioinformatics advances will make the transcriptome a very powerful 

tool for analyzing basic biological questions and its increasing impact on 

personalized medicine (Kukurba and Montgomery, 2015). 

Chromatin Immunoprecipitation Sequencing (ChIP-Seq)  

ChIP-Seq is one of the methods used to find DNA binding sites of 

a DNA binding protein of interest in the genome (Valouev et al., 2008; 

Furey, 2012). The ability of proteins to cross-link DNA to which they 

are bound in vivo forms the basis of the method. Specific protein-DNA 

complexes can also be purified by immunoprecipitation (de Folter et al., 

2007). Antibodies specific to specific protein modifications, such as 

histone methylation, are preferred to explore the epigenetic mechanism 

of the genome. NGS technologies are being used to reveal genome-wide 

binding profiles of some specific proteins (Kim and Ren, 2006; Bhinge 
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et al., 2007). In the field of ChIP-Seq analysis, histone modifications are 

preferred to study epigenetic properties and biological functions. 

Significant advances in computational analysis and NGS technology 

have provided important systematic data on how the field of epigenomics 

contributes to development, cancer, cell identity, and various diseases 

(Ernst et al., 2011; Yamaguchi et al., 2018; Zhao and Shilatifard, 2019). 

ChIP-Seq computational analysis workflow is performed in two stages 

and these are separated into different phases. The first one is sample 

preparation and sequencing, and the other one is computational analysis. 

DNA binding proteins have led to the development and updating 

of experimental methods over the years to better define these 

interactions. ChIP-Seq remains the first to be used to localize binding 

sites for histone modifications and individual proteins. The limitations 

of antibody development, modification, static snapshots of a living cell 

require the use of complementary methods and extensions of ChIP-Seq 

to ensure transcriptional regulation (Nakato and Sakata, 2021). 

 

 Metagenomic Sequencing 

Due to the lack of available technology and reference genomes, 

analysis of any bacteria was rare until recent years. The process of 

sequencing DNA from an organism’s genome is called metagenomics. It 

is an important method used to study both the structure and function of 

the microbiome population (Roumpeka et al., 2017). However, the rapid 

increase in genome sequences, along with the development of NGS, has 

led to rapid progress in metagenomic sequencing. The increasing 

sequencing throughput, low cost, and additional technological advances 

have also increased interest in metagenomics new NGS technologies 

continue to develop, the metagenome field will continue to adapt to new 

sequencing data (Watson, 2014). Studies on many different microbiomes 

have brought significant innovations, including genes that code for 

proteins of significant industrial value. In studies conducted, researchers 

have provided bioinformatics tools that allow them to analyze large 

metagenomic data sets and extract possible new protein/gene/enzyme. It 

has been revealed that it can provide new enzymes that are of significant 
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value for the characterization of protein and function. However, studies 

are needed in this area (Scholz et al., 2012; Roumpeka et al., 2017). 

DNA Methylation Sequencing (Methyl-Seq) 
Methylation sequencing is known as the process of DNA 

methylation using sodium bisulfite and then nucleotide base conversion. 

When analyzing methylation sequencing results, a detailed overview of 

DNA methylation patterns across the genome is revealed. It also helps 

researchers understand the epigenetic mechanisms that regulate cellular 

development, environmental responses, and diseases. When we look at 

how it works, it works by first converting unmethylated cytosines to 

uracil using sodium bisulfite. After PCR amplification and sequencing, 

uracil is read as thymine, and direct PCR sequencing or cloning 

sequencing is used to measure the thymine read counts. Since methylated 

cytosine is not converted by sodium bisulfite, methylation sequencing 

separates methylated cytosine residues from unmethylated 

cytosine/transformed thymine. After these steps, it can be determined 

whether DNA methylation has occurred, and the converted thymine can 

be quantified from the total read counts from direct PCR sequencing or 

cloning sequencing. Methylation sequencing allows us to map and 

quantify the presence of methyl groups in DNA strands; it is also a 

critical component of gene regulation and expression (Schumacher et al., 

2006; Morrison et al., 2021). 

Single-Cell Sequencing (SCS)  

SCS has been important in investigating genomic, epigenomic, and 

transcriptomic heterogeneity in cellular populations and explaining their 

variability levels. In addition, they have rapidly developed to observe 

single cells in more detail. SCS has become a powerful tool for analyzing 

omic-scale properties of different and heterogeneous cell populations, 

including stem cells. One of the advantages of this method is that it 

makes a significant contribution to the study of cellular heterogeneity 

without any prior knowledge of the cell population. The first genome-

wide single-cell DNA and RNA sequencing methods for mammalian 

cells brought this method to the best level (Grun et al., 2015). These early 



AQUATIC ECOSYSTEMS IN THE ANTHROPOGENIC AGE | 250 

 

studies led to the emergence of SCS. SCS methods have proven to be 

more difficult compared to RNA. The reason given is that a single cell 

contains only two copies of each DNA molecule, while most contain 

thousands of copies of RNA molecules. Surani laboratory in 2009, 

single-cell transcriptome sequencing was first applied. Single-cell 

mRNA sequencing methods have started to be used after technical 

improvements have been made and completed (Sasagawa et al., 2013). 

This developed method has been used in many different studies, such as 

discovering rare cell types, determining tumor heterogeneity, and 

distinguishing cell types in healthy tissues (Patel et al., 2014). The use of 

SCS has provided important data in many biological phenomena such as 

gene transcription, carcinogenesis and embryo development. Single-cell 

multi-omics sequencing has become the preferred method to establish 

core gene regulatory relationships differentiation stages of stem cells and 

within a cell during the development. New methods will likely emerge 

shortly that cover more layers of different omics. It will also be an ideal 

method to establish a causal relationship between genotype and 

phenotype using gene editing technologies and will also provide new 

insights into the biological causes of diseases (Grun et al., 2015). 

USE OF SEQUENCE ANALYSIS IN AQUATIC 

ORGANISMS 

Many stress factors such as human activities, nutritional changes, 

global climate change, biological and chemical pollution negatively 

affect aquatic ecosystems (Marushka et al., 2019). These stress factors 

affect organisms at almost every level, from individual and biological 

processes to global and local ecosystems (Mushtaq et al., 2020; Carrier-

Belleau et al., 2021). As a result of long-term exposure, these stress 

factors are also transferred to future generations. When recent studies are 

examined, it has been examined how epigenetic regulation should adapt 

to environmental factors and stress responses (Lee et al., 2022). With the 

recent importance of human activities, climate change and 

environmental epigenetics studies have become very important in 

understanding the negative effects on aquatic ecosystems. More than 

70% of the world's surface consists of water and can be directly affected 
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by any environmental stress factors. Several recent review articles have 

attempted to regulate aquatic environmental epigenetics by focusing on 

ecotoxicology, chemical pollutants, or epigenetic analytical approaches 

to specific ecosystems in oceans and freshwaters (Šrut, 2021; Xu et al., 

2022; Pham and Lin, 2023). 

In recent years, aquatic animal models have been widely used in 

different studies. Such animal models contribute to the 

determination of various disease pathologies at the molecular and 

cellular biology levels, and the development of some therapeutic 

methods and diagnostic. The genomes of these species allow the 

application of physiological and pathophysiological discoveries obtained 

by linking phenotypic changes to genetic characteristics to human 

disease research. Sequencing their genomes provides important data for 

researchers in the field of biomedical research. NGS is routinely used in 

environmental monitoring studies because it allows the sequencing of 

multiple species in many samples simultaneously with a single 

instrument. As a result, it provides both cost and time advantages in 

terms of processed samples. The most preferred NGS technique today is 

454 Pyrosequencing. Compared to other techniques, it can produce 

longer sequences for accurate identification (Hajibabaei et al., 2011). 

To conduct environmental epigenetic studies on aquatic species 

such as model organisms such as zebrafish and Daphnia or organisms 

such as cnidarians, scallops, and mollusks, genome types depend on their 

sources and reference libraries. Insufficient information about the 

genomes of such organisms will hinder future environmental epigenetic 

studies (Pham et al., 2023). For example, analytical and epigenetic 

approaches are very important for studying the interactions between the 

environment and genotype. It is of great importance to monitor 

organisms that have an important place in aquatic ecosystems against the 

possible harmful effects of environmental pollution (Eirin-Lopez and 

Putnam, 2019). Toxic pollutants that pollute aquatic ecosystems 

accumulate in the affect all trophic levels and food chain which is why 

they are a concern for human health and both ecosystems. In addition, it 

is important to use better methods and tools to measure and monitor the 

effects of such harmful substances on ecosystems and natural 
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populations. For example, transcriptome analysis has become an 

important tool used to biological functions that will respond to toxic 

substances (Kumar and Kocour, 2016).  

NGS technologies, which have become quite popular in recent 

years, are preferred for such studies. This technology is used to 

investigate topics such as bacterial toxicity, taxonomic classification, 

Cyanobacteria, and functional and catabolic gene characterization, 

making microbial studies related to aquatic toxicity and the wastewater 

industry important (Garner et al., 2021). For example, although 

microarray beams are at the forefront of transcriptome analysis, these 

technologies have been widely used to measure transcripts in recent 

years. The toxic effects of copper (Cu) and cadmium (Cd) were studied 

in yellow perch and the conditions in zebrafish embryos after short-term 

exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were 

investigated. 454 sequencing technology was used to determine the 

effects of NGS combined with real-time PCR on miRNA expression 

(Jenny et al., 2012). As a result of the study, they emphasized that TCDD 

exposure may affect hematopoiesis and cardiovascular development by 

changing miRNA expression. In another study, it was concluded that 

oxidative stress was caused by gene expression in Burbot fish (Lota lota) 

exposed to persistent organic pollutants (POPs) (Olsvik et al., 2013In 

this study conducted with NGS technology, the molecular mechanism of 

toxicity of silver nanoparticles in zebrafish embryos was studied. As a 

result, differences in gene expression, especially protein synthesis and 

oxidative phosphorylation were observed (Van Aerle et al., 2013). Sun 

et al. (2016) used NGS technology to examine liver histology in 

Megalobrama amblycephala to investigate the mechanisms underlying 

nitrite toxicity. As a result of the study, they showed that nitrites can 

cause oxidative stress, liver damage, histotoxic hypoxia and cell death. 

When the studies conducted are examined, it has been shown that NGS 

provides important mechanistic information in addition to toxicity, not 

only to determine gene expression changes as a response to toxic 

substances, but also to all animal physiology. In the study, gene 

expression analysis showed that the temperature difference during early 

larval and embryonic development changed the miRNA profile in the 
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short/long term. It is suggested that the increasing sea temperature may 

affect the life history of fish species (Bizuayehu et al., 2015). NGS, 

which has commercially important features, is preferred in the 

examination of related genome regions and ecotoxicological studies. It 

is also used to obtain more information in genome-wide characterization, 

in the study of the control of biological processes, and in the extraction 

of messenger RNA and micro-RNA profiles. In recent times, RNA-seq 

analyses have been used to measure mRNA expression levels and are 

becoming increasingly important for better examination of gene 

expression in fish. RNA-seq analyses have been increasingly used in 

recent years to study gene expression in fish. Since transcriptomes are 

directly associated with genes or functional regions in the genome, they 

have generally become a main research topic in aquaculture species. In 

a study, transcriptome analysis was performed in the testes, ovaries, 

brain and gills of rainbow trout (Oncorhynchus mykiss) and the genes 

that were dominantly expressed in the tissue were determined (Le Cam 

et al., 2012). 

Transcriptomes are a fundamental and important research topic in 

aquatic species and are closely related to genes in the genome. Sea bream 

(Sparus aurata) was preferred to identify genes required for a specific 

function and the determined tissue-specific expression profile. 

Transcriptome analyses were performed on genes identified for muscle 

development and myogenesis in sea bream due to its rapid skeletal 

muscle properties (Garcia de la Serrana et al., 2012). The arrival of next-

generation sequencing analysis has led to a decrease in costs and an 

increase in the speed of DNA sequencing. It has provided a significant 

convenience, especially in life sciences. This technology has facilitated 

the reading of all or nearly all the genomes and transcriptomes of various 

fish species and other aquatic organisms. In addition to NGS analysis, 

appropriate experimental models must be selected and applied to obtain 

statistically accurate and strong results.  

 

CONCLUSION  

Although Sanger sequencing is still considered the gold standard 

method for DNA sequence analysis today, it has disadvantages such as 
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long turnaround time and high cost. NGS technologies, which are 

cheaper and faster than traditional Sanger methods, have become an 

important step in genomics due to their ability to sequence hundreds of 

billions of base pairs simultaneously. Performing millions of sequencing 

reactions in parallel and sequencing each base multiple times increases 

the depth and therefore accuracy of the data. Next-generation DNA 

sequencing technology provides an unimaginable amount of information 

and new approaches. However, both storing and analyzing and 

evaluating this much information poses great challenges. With the 

importance given to it in recent years, there is a need for Next Generation 

DNA sequencing technology and bioinformatics analysis tools. Future 

studies should be extended not only to model organisms but also to non-

model species, and appropriate sampling should be performed 

accordingly. Because then it is possible to better understand the genetic 

and biological importance of the aquatic species under study.  
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